Abstract:
An electronic device includes a substrate, an optical sensor coupled to the substrate, and an optical emitter coupled to the substrate. A lens is aligned with the optical emitter and includes an upper surface and an encapsulation bleed stop groove around the upper surface. An encapsulation material is coupled to the substrate and includes first and second encapsulation openings therethrough aligned with the optical sensor and the lens, respectively.
Abstract:
An electronic device includes an integrated circuit chip mounted to a heat slug. The heat slug has a peripheral region having first thickness along a first direction, the peripheral region surrounding a recess region (having a second, smaller, thickness along the first direction) that defines a chip mounting surface along a second direction perpendicular to the first direction. The recess region defines side borders and a nook extends into the heat slug along the side borders. An insulating body embeds the integrated circuit one chip and heat slug. Material of the insulating body fills the nook.
Abstract:
A proximity sensor having a relatively small footprint includes a substrate, a semiconductor die, a light emitting device, and a cap. The light emitting device overlies the semiconductor die. The semiconductor die is secured to the substrate and includes a sensor area capable of detecting light from by the light emitting device. The cap also is secured to the substrate and includes a light barrier that prevents some of the light emitted by the light emitting device from reaching the sensor area. In one embodiment, the light emitting device and the semiconductor die are positioned on the same side of the substrate, wherein the light emitting device is positioned on the semiconductor die. In another embodiment, the light emitting device is positioned on one side of the substrate and the semiconductor die is positioned on an opposing side of the substrate.
Abstract:
An image sensor device may include an interconnect layer, an image sensor IC carried by the interconnect layer and having an image sensing surface, and encapsulation material laterally surrounding the image sensor IC and covering an upper surface of the image sensor IC up to the image sensing surface. The image sensor device may include an optical plate having a peripheral lower surface carried by an upper surface of the encapsulation material and aligned with the image sensing surface, the optical plate being spaced above the image sensing surface to define an internal cavity, and a lens assembly coupled to the encapsulation material and aligned with the image sensing surface.
Abstract:
Embodiments of the present disclosure provide a semiconductor device, a semiconductor package, and a method for manufacturing a semiconductor device. The semiconductor device comprises: a semiconductor die; an electrical isolation layer formed on a surface of the semiconductor die; a substrate; and a non-conductive adhesive layer disposed between the electrical isolation layer and the substrate, so as to adhere the electrical isolation layer to the substrate.
Abstract:
An electronic device may include an integrated circuit (IC), electrically conductive connectors coupled to the IC, and a heat sink layer adjacent the IC and opposite the electrically conductive connectors. The electronic device may include an encapsulation material surrounding the IC and the electrically conductive connectors, a redistribution layer having electrically conductive traces coupled to the electrically conductive connectors, a stiffener between the heat sink layer and the redistribution layer, and a fan-out component between the heat sink layer and the redistribution layer and being in the encapsulation material.
Abstract:
A memory device may include memory cells. The method may include receiving a request of reading a selected data word associated with a selected code word stored with an error correction code, and reading a first code word representing a first version of the selected code word by comparing a state of each selected memory cell with a first reference. The method may include verifying the first code word, setting the selected code word according to the first code word in response to a positive verification, reading at least one second code word representing a second version of the selected code word, verifying the second code word, and setting the selected code word according to the second code word in response to a negative verification of the first code word and to a positive verification of the second code word.
Abstract:
An image sensing device may include an interconnect layer and grid array contacts carried by the interconnect layer, and an image sensor IC carried by the interconnect layer and coupled to the grid array contacts, the image sensor IC having an image sensing surface. The image sensing device may include a transparent plate carried by the image sensor IC and aligned with the image sensing surface, and a cap carried by the interconnect layer and having an opening aligned with the image sensing surface. The cap may have an upper wall spaced above the interconnect layer and the image sensor IC to define an internal cavity, and the cap may define an air vent coupled to the internal cavity.
Abstract:
A single chip integrated circuit (IC) package includes a die pad, and a spacer ring on the die pad defining a solder receiving area. A solder body is on the die pad within the solder receiving area. An IC die is on the spacer ring and is secured to the die pad by the solder body within the solder receiving area. Encapsulating material surrounds the die pad, spacer ring, and IC die. For a multi-chip IC package, a dam structure is on the die pad and defines multiple solder receiving areas. A respective solder body is on the die pad within a respective solder receiving area. An IC die is within each respective solder receiving area and is held in place by a corresponding solder body. Encapsulating material surrounds the die pad, dam structure, and plurality of IC die.
Abstract:
An integrated circuit (IC) device includes an IC and encapsulating material surrounding the IC. Leads are coupled to the IC and extend outwardly from sides of the encapsulating material, with each lead having three contiguous exposed segments with upper and lower bends defining a Z-shape. In another example, the leads include an upper horizontal segment, lower horizontal segment, and intermediate curved segment extending upwardly from the upper horizontal segment and downwardly to the lower horizontal segment.