Abstract:
A method of manufacturing a semiconductor device includes forming an integrated circuit region on a semiconductor wafer. A first metal layer pattern is formed over the integrated circuit region. A via hole is formed to extend through the first metal layer pattern and the integrated circuit region. A final metal layer pattern is formed over the first metal layer pattern and within the via hole. A plug is formed within the via hole. Thereafter, a passivation layer is formed to overlie the final metal layer pattern.
Abstract:
A method of forming a wire structure connecting to a bonding pad of a semiconductor chip includes depositing a passivation layer on an active surface of the semiconductor chip, depositing a seed metal layer on the bonding pad and the passivation layer, depositing a metal layer on the seed metal layer, etching selected portions of the seed metal layer, leaving unetched a first area, overlapping the bonding pad and a second area overlapping a connection pad, wherein the wire structure is formed by the metal layer being electrically connected to the bonding pad and the connection pad, but floating from the passivation layer, and depositing an insulting layer on the wire structure.
Abstract:
An integrated circuit (IC) device includes a semiconductor substrate having a via hole extending through at least a part thereof, a conductive structure in the via hole, a conductive barrier layer adjacent the conductive structure; and a via insulating layer interposed between the semiconductor substrate and the conductive barrier layer. The conductive barrier layer may include an outer portion oxidized between the conductive barrier layer and the via insulating layer, and the oxidized outer portion of the conductive barrier layer may substantially surrounds the remaining portion of the conductive barrier layer.
Abstract:
According to aspects provided herein, a semiconductor device may include a bump providing improved reliability and reduced size. In some aspects, a conductive pad may be formed on a substrate, and a conductive support layer, which may be a pillar, may be formed on the conductive pad. An intermetallic compound (IMC) layer may be formed on the conductive support layer, and a solder layer may be formed on the IMC layer. In some aspects, the conductive support layer may be of a smaller width than the IMC layer. In some aspects, the conductive support layer may have side surfaces which are wider at the solder side than at the conductive pad side. In some aspects, other layers may be formed, such as a seed layer between the conductive pad and the conductive support layer, or a barrier layer between the conductive support layer and the IMC layer.
Abstract:
Methods of forming an integrated circuit device include forming an interlayer dielectric layer on a first surface of a semiconductor substrate and then forming an interconnect hole that extends through the interlayer dielectric layer and into the semiconductor substrate. A first sidewall spacer layer is formed on a sidewall of the interconnect hole. The semiconductor substrate at a bottom of the interconnect hole is isotropically etched to define an undercut recess in the semiconductor substrate. This etching step is performed using the first sidewall spacer layer as an etching mask. The interconnect hole and the uncut recess are then filled with a through-via electrode. A second surface of the semiconductor substrate is removed for a sufficient duration to expose the uncut recess containing the through-via electrode.
Abstract:
A semiconductor device having a chip stack and an interconnection terminal is provided. The chip stack includes a first semiconductor chip, a second semiconductor chip and a third semiconductor chip stacked on each other. The interconnection terminal is electrically coupled to the chip stack. The first semiconductor chip includes a first front surface and a first backside surface. The second semiconductor chip includes a second front surface, a second backside surface, a second circuit layer and a through-electrode which is electrically coupled to the second circuit layer and penetrates the second semiconductor chip. The third semiconductor chip includes a third front surface, a third backside surface opposite to the third front surface and a third circuit layer adjacent to the third front surface. The first front surface and the second front surface face each other. The third front surface and the second backside surface face each other.
Abstract:
A semiconductor device includes a first device including a first substrate and a first external connection terminal for connecting outside the first device; a second device stacked on the first device, the second device including a second substrate and a second external connection terminal for connecting outside the second device; an adhesive pattern disposed between the first device and second device, the adhesive pattern disposed in locations other than locations where the first external connection terminal and second external connection terminal are disposed, and the adhesive pattern causing the first device and second device, when stacked, to be spaced apart by a predetermined distance; and a plated layer disposed between and electrically and physically connecting the first external connection terminal and the second external connection terminal.
Abstract:
A semiconductor device and a method of fabricating a semiconductor device. The semiconductor device includes an interlayer insulation layer pattern, a metal wire pattern exposed by a passage formed by a via hole formed in the interlayer insulation layer pattern to input and output an electrical signal, and a plated layer pattern directly contacting the metal wire pattern and filling the via hole. The method includes forming an interlayer insulation layer having a metal wire pattern to input and output an electrical signal formed therein, forming a via hole to define a passage that extends through the interlayer insulation layer until at least a part of the metal wire pattern is exposed, and forming a plated layer pattern to fill the via hole and to directly contact the metal wire pattern by using the metal wire pattern exposed through the via hole as a seed metal layer.
Abstract:
Provided are methods of fabricating semiconductor chips, semiconductor chips formed by the methods, and chip-stack packages having the semiconductor chips. One embodiment specifies a method that includes patterning a scribe line region of a semiconductor substrate to form a semiconductor strut spaced apart from edges of a chip region of the semiconductor substrate.
Abstract:
A substrate treating device may include a plating treatment portion configured to perform a plating process of a substrate, a wet treatment portion configured to perform a wet treating process of the substrate, the wet treatment portion being under the plating treatment portion, and a substrate support portion configured to support the substrate so that a plating surface of the substrate faces upward, the substrate support portion being further configured to move the substrate between the plating treatment portion and the wet treatment portion.