Abstract:
A printed circuit board having an embedded chip capacitor includes a first conductive layer; a second conductive layer, placed away from the first conductive layer; a chip capacitor, having a first electrode connected to the first conductive layer through being seated in a cavity formed between the first conductive layer and the second conductive layer; a filled material, filled in a space excluding a space occupied by the chip capacitor in the cavity; and a via, penetrating the filled material and connecting the second conductive layer to the second electrode of the chip capacitor.
Abstract:
A semiconductor device has a protective layer formed over an active surface of a semiconductor wafer. The semiconductor die with pre-applied protective layer are moved from the semiconductor wafer and mounted on a carrier. The semiconductor die and contact pads on the carrier are encapsulated. The carrier is removed. A first insulating layer is formed over the pre-applied protective layer and contact pads. Vias are formed in the first insulating layer and pre-applied protective layer to expose interconnect sites on the semiconductor die. An interconnect structure is formed over the first insulating layer in electrical contact with the interconnect sites on the semiconductor die and contact pads. The interconnect structure has a redistribution layer formed on the first insulating layer, a second insulating layer formed on the redistribution layer, and an under bump metallization layer formed over the second dielectric in electrical contact with the redistribution layer.
Abstract:
A capacitor having a high quality and a manufacturing method of the same are provided.A capacitor has a lower electrode formed on an oxide film, a dielectric layer formed on the lower electrode, an upper electrode formed so as to face the lower electrode with the dielectric layer between, and an upper electrode formed so as to cover the upper electrode, an opening portion of the upper electrode and an opening portion of the dielectric layer. By forming the upper electrode on the dielectric layer, it is possible to pattern the dielectric layer by using the upper electrode as a mask, and provide a capacitor having a high-quality dielectric layer by preventing impurity diffusion into the dielectric layer. By forming the upper electrode on the dielectric layer, it is possible to prevent the dielectric layer from being exposed to etching liquid, liquid developer, etc.
Abstract:
The invention relates to a multi-pole plug connector (90) for contacting a multi-layer circuit board (51), comprising a plurality of contact elements (50a, 50b-50′a, 50′b), as well as to a multi-layer circuit board for assembly with a multi-pole plug connector (90), comprising blind boreholes (60a, 60b-60′a, 60′b) for contacting terminal pins (53a, 53b-53′a, 53′b) of the contact elements (50a, 50b-50′a, 50′b) of the multi-pole plug connector (90). The invention further relates to a combination of a multi-pole plug connector (90) for contacting with a multi-layer circuit board (51) and to a multilayer circuit board for assembly with the multi-pole plug connector (90). The plug connector (90) according to the invention is characterized by terminal pins (53a, 53b-53′a, 53′b) that have different lengths for contacting the terminal pins (53a, 53b-53′a, 53′b) with conductors (52a, 52b; 72a, 72b-72′a, 72′b) of the multi-layer circuit board (51) provided in different conductor levels (71-71′). The multi-layer circuit board (51) according to the invention is characterized by blind boreholes (60a, 60b-60′a, 60′b) that terminate in different conductor levels (71-71′) of the multilayer circuit board (51) for deliberately contacting the terminal pins (53a, 53b-53′a, 53′b) with conductors (52a, 52b; 72a, 72b-72′a, 72′b) of the multilayer circuit board (51) provided in different conductor levels (71-71′).
Abstract:
A printed circuit board and a method of manufacturing the printed circuit board are disclosed. The method of manufacturing a printed circuit board, by forming at least one bump for interlayer conduction on a surface of a board and stacking an insulation layer on the surface of the board, can include the operations of forming at least one dam on the surface of the board that surrounds a region corresponding to the bump, forming the bump by printing conductive paste onto the region corresponding to the bump, and stacking the insulation layer onto the surface of the board. This method can be utilized to improve productivity and resolve the problem of spreading.
Abstract:
A process for forming a laminate with capacitance and the laminate formed thereby. The process includes the steps of providing a substrate and laminating a conductive foil on the substrate wherein the foil has a dielectric. A conductive layer is formed on the dielectric. The conductive foil is treated to electrically isolate a region of conductive foil containing the conductive layer from additional conductive foil. A cathodic conductive couple is made between the conductive layer and a cathode trace and an anodic conductive couple is made between the conductive foil and an anode trace.
Abstract:
An interposer is presented. The interposer includes an interposer base having first and second surfaces. A redistribution layer is disposed on a first surface of the interposer base. The interposer has at least one interposer pad coupled to the redistribution layer. It also includes at least one interposer contact on the second surface. The interposer contact is electrically coupled to the interposer pad via the redistribution layer. The interposer also includes at least one interposer via through the interposer base for coupling the interposer contact to the redistribution layer. The interposer via includes reflowed conductive material of the interposer contact.
Abstract:
A method of manufacturing a circuit board that includes: forming a conductive relievo pattern, including a first plating layer, a first metal layer, and a second plating layer stacked sequentially in correspondence with a first circuit pattern, on a seed layer stacked on a carrier; stacking and pressing together the carrier and an insulator, such that a surface of the carrier having the conductive relievo pattern faces the insulator; transcribing the conductive relievo pattern into the insulator by removing the carrier; forming a conduction pattern, including a third plating layer and a second metal layer stacked sequentially in correspondence with a second circuit pattern, on the surface of the insulator having the conductive relievo pattern transcribed; removing the first plating layer and seed layer; and removing the first and second metal layers, can provide a circuit board that has high-density circuit patterns without an increased amount of insulator.
Abstract:
In a method of manufacturing an electronic component built-in substrate of the present invention, a mounted body including a first insulating layer, a stopper metal layer formed under the first insulating layer of a portion corresponding to a component mounting region and a second insulating layer formed on a lower surface of the first insulating layer and covering the stopper metal layer is prepared, and a concave portion is obtained by penetration-processing a portion of the first insulating layer, which corresponds to the component mounting region to form an opening portion, while using the stopper metal layer as a stopper. Also, the stopper metal layer in the concave portion is removed, then an electronic component is mounted on the concave portion, and then a third insulating layer is formed on the electronic component.
Abstract:
A manufacturing process of a circuit substrate is provided. A conductive structure including a first patterned conductive layer, a first dielectric layer, a second dielectric layer, a first conductive layer, and a second conductive layer is provided. The first dielectric layer and the second dielectric layer are respectively disposed on two opposite surfaces of the first patterned conductive layer. The first conductive layer and the second conductive layer are respectively disposed on the first dielectric layer and the second dielectric layer. The first dielectric layer is between the first patterned conductive layer and the first conductive layer. The second dielectric layer is between the first patterned conductive layer and the second conductive layer. A conductive via is formed at the conductive structure. The first conductive layer and the second conductive layer are patterned to respectively form a second patterned conductive layer and a third patterned conductive layer.