Abstract:
A cable connection structure includes a cable and a substrate that includes a connection electrode to which the cable is connected. The substrate includes two or more protrusions that form a groove in which a conductor part of the cable is arranged. The height of the protrusions is greater than the diameter of the conductor part of the cable.
Abstract:
Disclosed are apparatus and methods related to conformal coating of radio-frequency (RF) modules. In some embodiments, a module can include an overmold formed over an RF component mounted on a packaging substrate. The overmold can also cover a surface-mount device (SMD) such as an RF filter implemented as a chip size surface acoustic wave (SAW) device (CSSD). The module can further include a conductive layer formed over the overmold and configured to provide RF shielding functionality for the module. The conductive layer can be electrically connected to a ground plane of the packaging substrate through the SMD. An opening can be formed in the overmold over the SMD; and the conductive layer can conform to the opening to electrically connect the conductive layer with an upper surface of the SMD and thereby facilitate the grounding connection.
Abstract:
A method for making a microelectronic unit includes forming a plurality of wire bonds on a first surface in the form of a conductive bonding surface of a structure comprising a patternable metallic element. The wire bonds are formed having bases joined to the first surface and end surfaces remote from the first surface. The wire bonds have edge surfaces extending between the bases and the end surfaces. The method also includes forming a dielectric encapsulation layer over a portion of the first surface of the conductive layer and over portions of the wire bonds such that unencapsulated portions of the wire bonds are defined by end surfaces or portions of the edge surfaces that are uncovered by the encapsulation layer. The metallic element is patterned to form first conductive elements beneath the wire bonds and insulated from one another by portions of the encapsulation layer.
Abstract:
The described embodiment relates generally to the field of inductive bonding. More specifically an inductive heater designed for use in assembling electronics is disclosed. A number of methods for shaping a magnetic field are disclosed for the purpose of completing an inductive bonding process without causing harm to unshielded adjacent electrical components.
Abstract:
A method and arrangement are disclosed for electrically connecting a contact of a first substrate to a contact of a second substrate, whereby the first substrate is positioned relative the second substrate. The method includes providing the first substrate with its contact facing towards the second substrate, providing the second substrate with its contact facing away from the first substrate, bonding a bonding medium to the contact of the first substrate, bonding the bonding medium to the first substrate thereby forming a loop, electrically connecting the contact of the second substrate to the bonding medium, and providing the second substrate with the contact on a nose or tongue extending from an edge of the second substrate. The first substrate can be positioned below the second substrate, with a contact of the first substrate connected to a contact of the second substrate.
Abstract:
A method and a system for illumination of a personal item, the system comprising at least one light source activated by a textile switch, the light source and the textile switch being secured to a textile substrate and connected by conductors on the textile substrate, the textile substrate being secured on the personal item. The method comprises securing at least one light source and a textile switch on a substrate, connecting the light source and the textile switch by conductors on the substrate, connecting the light source and the textile switch to a powering unit, securing the substrate to the personal item and operating the textile switch.
Abstract:
In an electronic apparatus comprising a circuit board supporting semiconductor components and traces or conductors for supplying electrical energy to the semiconductor components, and a connection arrangement by which the conductors are connected to a power supply cable, the circuit board being covered by an electrically insulating encapsulating layer, a molded frame part is mounted on the circuit board so as to cover the connection arrangement, the molded frame part having a circumferential edge structure which extends on one end into the encapsulating layer and at the other end projects above the encapsulating layer so as to create an interior space which, when the encapsulating layer is at least partially cured, is filled with additional encapsulating compound to form, after curing, a relatively thick protective layer over the wire or cable and conductor connecting area.
Abstract:
A first substrate of a light bar assembly includes a first edge and a second edge parallel to each other along a first direction. A first connecting end includes a first connecting portion protruding further outward than a second connecting portion. A first bonding pad and a second bonding pad are disposed on the first substrate. First solid-state semiconductor light sources are disposed along the first edge and the second edge. A second substrate, disposed corresponding to the first substrate, includes a third edge, a fourth edge, a second connecting portion, a third bonding pad, a fourth bonding pad, and second solid-state semiconductor light sources. A first connecting device is electrically connected to the first bonding pad and the fourth bonding pad; a second connecting device is electrically connected to the second bonding pad and the third bonding pad to fix the first substrate and the second substrate.
Abstract:
An electronic circuit module is mounted on an electronic circuit board. The electronic circuit module includes an electronic component that has a first electrode and a second electrode that form a facing surface. The electronic circuit module also includes a coaxial cable with a core wire and a shielded wire being exposed in stages. The core wire and the shielded wire of the coaxial cable are directly connected to the first electrode and the second electrode that are exposed at a predetermined cable connecting surface of the electronic component.
Abstract:
An assembly is provided of an electro-physical transducer (10) on a flexible foil (20) with a carrier (40). The flexible foil (20) has a first main surface (22) provided with at least a first electrically conductive track (24) connected to the electro-physical transducer and opposite said first main surface a second main surface (23) facing towards the carrier. At least a first incision (25a) extends through the flexible foil alongside said at least a first electrically conductive track, therewith defining a strip shaped portion (27) of the flexible foil that carries a portion of the at least a first electrically conductive track. The at least a first electrically conductive track is electrically connected to an electrical conductor (421) of the carrier, and the flexible foil is attached to the carrier with its strip shaped portion.