Abstract:
Structures and methods for detecting solder wetting of pedestal sidewalls. The structure includes a semiconductor wafer having an array of integrated circuit chips, each of the integrated circuit chips having an array of chip pedestals having respective chip solder columns on top of the chip pedestals, the pedestals spaced apart a first distance in a first direction and a spaced apart second distance in second direction perpendicular to the first direction; and at least one monitor structure disposed in different regions of the wafer from the integrated circuit chips, the monitor structure comprising at least a first pedestal and a first solder column on a top surface of the first pedestal and a second pedestal and a second solder column on a top surface of the second pedestal, the first and the second pedestals spaced apart a third distance, the third distance less than the first and the second distances.
Abstract:
The invention provides a semiconductor chip structure having at least one aluminum pad structure and a polyimide buffering layer under the aluminum pad structure, wherein the polyimide buffering layer is self-aligned to the aluminum pad structure, and a method of forming the same. The method includes forming a polyimide buffering layer on a substrate, forming an aluminum pad structure on the buffering layer, and, using the aluminum pad structure as a mask, etching the substrate to remove the polyimide buffering layer from the substrate everywhere except under the aluminum pad structure.
Abstract:
A method of connecting chips to chip carriers, ceramic packages, etc. (package substrates) forms smaller than usual first solder balls and polymer pillars on the surface of a semiconductor chip and applies adhesive to the distal ends of the polymer pillars. The method also forms second solder balls, which are similar in size to the first solder balls, on the corresponding surface of the package substrate to which the chip will be attached. Then, the method positions the surface of the semiconductor chip next to the corresponding surface of the package substrate. The adhesive bonds the distal ends of the polymer pillars to the corresponding surface of the package substrate. The method heats the first solder balls and the second solder balls to join the first solder balls and the second solder balls into solder pillars.
Abstract:
An IC chip package, in one embodiment, may include an IC chip including an upper surface including an overhang extending beyond a sidewall of the IC chip, and underfill material about the sidewall and under the overhang. The overhang prevents underfill material from extending over an upper surface of the IC chip. In another embodiment, a ball grid array (BGA) is first mounted to landing pads on a lower of two joined IC chip packages. Since the BGA is formed on the lower IC chip package first, the BGA acts as a dam for the underfill material thereon. The underfill material extends about the respective IC chip and surrounds a bottom portion of a plurality of solder elements of the BGA and at least a portion of respective landing pads thereof.
Abstract:
Structure and methods of making the structures. The structures include a structure, comprising: an organic dielectric passivation layer extending over a substrate; an electrically conductive current spreading pad on a top surface of the organic dielectric passivation layer; an electrically conductive solder bump pad comprising one or more layers on a top surface of the current spreading pad; and an electrically conductive solder bump containing tin, the solder bump on a top surface of the solder bump pad, the current spreading pad comprising one or more layers, at least one of the one or more layers consisting of a material that will not form an intermetallic with tin or at least one of the one or more layers is a material that is a diffusion barrier to tin and adjacent to the solder bump pad.
Abstract:
A method of forming a semiconductor structure includes forming a resistor on an insulator layer over a substrate, and forming at least one dielectric layer over the resistor. The method also includes forming a substrate contact through the at least one dielectric layer, through the resistor, through the insulator layer, and into the substrate. The substrate contact comprises a high thermal conductivity material.
Abstract:
A method of forming a semiconductor structure includes forming a resistor on an insulator layer over a substrate, and forming at least one dielectric layer over the resistor. The method also includes forming a substrate contact through the at least one dielectric layer, through the resistor, through the insulator layer, and into the substrate. The substrate contact comprises a high thermal conductivity material.
Abstract:
Interconnect structures and methods of fabricating the same are provided. The interconnect structures provide highly reliable copper interconnect structures for improving current carrying capabilities (e.g., current spreading). The structure includes an under bump metallurgy formed in a trench. The under bump metallurgy includes at least: an adhesion layer; a plated barrier layer; and a plated conductive metal layer provided between the adhesion layer and the plated barrier layer. The structure further includes a solder bump formed on the under bump metallurgy.
Abstract:
Semiconductor structures, methods of manufacture and design structures are provided. The structure includes at least one offset crescent shaped solder via formed in contact with an underlying metal pad of a chip. The at least one offset crescent shaped via is offset with respect to at least one of the underlying metal pad and an underlying metal layer in direct electrical contact with an interconnect of the chip which is in electrical contact with the underlying metal layer.
Abstract:
An array of radiation sensors or detectors is integrated within a three-dimensional semiconductor IC. The sensor array is located relatively close to the device layer of a circuit (e.g., a microprocessor) to be protected from the adverse effects of the ionizing radiation particles. As such, the location where the radiation particles intersect the device layer can be calculated with coarse precision (e.g., to within 10 s of microns).