Abstract:
An interposer capable of preventing breaking of a wiring pattern with an IC chip loaded on a package substrate. Stress due to a difference in thermal expansion coefficient between a multilayer printed wiring board having a large thermal expansion and the IC chip having a small thermal expansion can be absorbed by locating the interposer between the package substrate and the IC chip. Particularly by using an insulation substrate whose Young's modulus is 55 to 440 Gpa as the insulation substrate constituting the interposer, stress is absorbed within the interposer.
Abstract:
A multilayer printed wiring board 10 includes: a mounting portion 60 on the top surface of which is mounted a semiconductor element that is electrically connected to a wiring pattern 32, etc.; and a capacitor portion 40 having a high dielectric constant layer 43, formed of ceramic and first and second layer electrodes 41 and 42 that sandwich the high dielectric constant layer 43. One of either of the first and second layer electrodes 41 and 42 is connected to a power supply line of the semiconductor element and the other of either of the first and second layer electrodes 41 and 42 is connected to a ground line. In this multilayer printed wiring board 10, high dielectric constant layer 43 included in the layered capacitor portion 40, which is connected between the power supply line and the ground line, is formed of ceramic. With this structure, the static capacitance of the layered capacitor portion 40 can be high, and an adequate decoupling effect is exhibited even under circumstances in which instantaneous potential drops occur readily.
Abstract:
This invention is to propose a technique of producing a printed wiring board having an excellent adhesion property between an electroless plated film and an electrolytic plated film constituting a conductor circuit through a semi-additive process without causing the peeling of a plating resist and is a printed wiring board comprising conductor circuits formed on a roughened surface of an insulating layer, in which the conductor circuit is constituted with an electroless plated film at the side of the insulating layer and an electrolytic plated film at the opposite side and the electroless plated film located at the side of the insulating layer is formed so as to follow to the roughened surface of the insulating layer. This printed wiring board is produced by a semi-additive method wherein the electroless plated film is formed on the roughened surface of the insulating layer so as to follow to the roughened surface of the insulating layer.
Abstract:
A multilayer printed-circuit board is provided which is formed by stacking one on the other a plurality of circuit boards, each including a hard insulative substrate having a conductor circuit formed on one or either side thereof, and having formed therein via-holes formed through the hard insulative substrate to extend to the conductor circuit and each filled with a conductive substance, with an adhesive applied between the plurality of circuit boards, and heating and pressing the circuit boards together. One of the outermost ones of the stacked circuit boards has formed on the surface thereof conductive bumps each positioned right above the via-hole and electrically connected to the via-hole, and the other outermost one of the stacked circuit boards has formed on the surface thereof conductive pin or balls each positioned right above the via-hole and electrically connected to the via-hole. This multilayer printed-circuit board is used as a package circuit board and electronic components such as LSI chip are mounted on it to form a semiconductor device. The multilayer printed-circuit board is used as a core substrate, and a build-up wiring layer is formed on one or either side of the core multilayer circuit board. Solder bumps are formed on the surface of one outermost conductor circuit of the build-up wiring layer and conductive pins or balls are provided on the surface of the other outermost conductor circuit of the build-up wiring layer. Thus, a multilayer printed-circuit board is provided on which wiring can be made densely and also electronic components can be mounted with a high density.
Abstract:
A circuit wiring board including a wiring substrate, and a heat resistant substrate accommodated in the wiring substrate and including a core substrate and a through hole conductor formed in the core substrate, the core substrate having a first surface and a second surface on an opposite side of the first surface, the through hole conductor providing electrical connection through the core substrate between the first surface and the second surface of the core substrate.
Abstract:
A printed wiring board includes a core substrate having a cavity and having first and second surfaces, an inductor component accommodated in the cavity, a filler resin filling a gap formed between the substrate and component in the cavity, and a buildup layer formed on the first surface of the substrate and the component. The component has a coil layer, a second insulation layer formed on the coil layer, an electrode formed on the substance layer, and a via conductor formed in the substance layer and connecting the coil layer and the electrode, the component is accommodated in the cavity such that the electrode faces the first surface of the substrate, and the buildup layer includes an interlayer insulation layer formed on the first surface of the substrate and the component, a conductive layer formed on the insulation layer, and a connection via conductor connecting the conductive layer and electrode.
Abstract:
A multilayer printed wiring board includes: a build-up layer that is formed on a core substrate and has a conductor pattern disposed on an upper surface; a low elastic modulus layer that is formed on the build-up layer; lands that are disposed on an upper surface of the low elastic modulus layer and connected via solder bumps to a IC chip; and conductor posts that pass through the low elastic modulus layer and electrically connect lands with conductor patterns. The conductor posts have the aspect ratio Rasp (height/minimum diameter) of not less than 4 and the minimum diameter exceeding 30 μm, and the aspect ratio Rasp of external conductor posts, which are positioned at external portions of the low elastic modulus layer, is greater than or equal to the aspect ratio Rasp of internal conductor posts, which are positioned at internal portions of the low elastic modulus layer.
Abstract:
A method for manufacturing a board with a built-in electronic element, includes providing a support substrate including a support base and a metal foil, forming a protective film made of a metal material on the metal foil of the support substrate, forming a conductive pattern made of a metal material on the protective film by an additive method, placing an electronic element on the support substrate with the conductive pattern such that a surface of the electronic element where a circuit is formed faces the conductive pattern, covering the electronic element with an insulative resin, etching away the metal foil using a first etching solution such that the protective film is not dissolved by the first etching solution or that the protective film has an etching speed which is slower than an etching speed of the metal foil, and electrically connecting terminals of the electronic element and a part of the conductive pattern.
Abstract:
A method for manufacturing a printed circuit board, including providing a core substrate and an electronic component contained in the core substrate, the electronic component having a die pad, forming a positioning mark on the core substrate, forming an interlayer insulating layer over the core substrate and the electronic component, forming a via hole opening connecting to the die pad of the electronic component through the interlayer insulating layer in accordance with the positioning mark on the core substrate, and forming a via hole structure in the via hole opening in the interlayer insulating layer such that the via hole structure is electrically connected to the die pad.
Abstract:
A wiring board including a first substrate having a penetrating hole penetrating through the first substrate, a built-up layer formed on one surface of the first substrate and including multiple interlayer resin insulation layers and wiring layers, the built-up layer having an opening portion communicated with the penetrating hole of the first substrate and opened to the outermost surface of the built-up layer, an interposer accommodated in the opening portion of the built-up layer and including a second substrate and a wiring layer formed on the second substrate, the wiring layer of the interposer including multiple conductive circuits for being connected to multiple semiconductor elements, and a filler filling the opening portion of the built-up layer such that the interposer is held in the opening portion of the built-up layer. The opening portion of the built-up layer has a tapered portion tapering toward the outermost surface of the built-up layer.