Abstract:
Semiconductor packages are disclosed. A semiconductor package includes: a first chip that includes a chip region and scribe regions at edges of the chip region, wherein the chip region comprises integrated circuit units and main through substrate vias electrically connected to the integrated circuit units; and a second chip that is bonded onto the first chip. The semiconductor package includes dummy conductive connectors including at least dummy wiring lines, the dummy conductive connectors electrically connected to the main through substrate vias at one end, and not capable of forming an electrical connection at the other end.
Abstract:
A method of predicting a temperature includes operatively coupling a temperature prediction circuit to a device including a semiconductor chip, determining a correlation between a current and voltage of the temperature prediction circuit, and predicting a temperature with respect to power applied to the device using the determined correlation.
Abstract:
Embodiments of the inventive aspect include a method of manufacturing a semiconductor package including a plurality of stacked semiconductor chips in which edges of a semiconductor wafer substrate may be prevented from being damaged or cracked when the semiconductor package is manufactured at a wafer level, while a diameter of a molding element is greater than a diameter of the semiconductor wafer substrate. The molding element may cover a surface of the wafer substrate and the plurality of stacked semiconductor chips. Embodiments may include a wafer level semiconductor package including a circular substrate having a first diameter, a circular passivation layer attached to the circular substrate, the passivation layer having the first diameter, and a circular molding element covering surfaces of the plurality of semiconductor chips, and covering an active area of the substrate. The circular molding element may have a second diameter that is greater than the first diameter.
Abstract:
A wafer processing method, by which a device wafer may be aligned and bonded to a carrier wafer to perform a back grinding process for the device wafer and may be separated from the carrier wafer after performing the back grinding process, and a method of manufacturing a semiconductor device by using the wafer processing method are provided. The wafer processing method includes: disposing a first magnetic material on a front side of a wafer and disposing a second magnetic material on a carrier wafer, wherein a surface of the first magnetic material and a surface of the second magnetic material, which face each other, have opposite polarities; aligning and bonding the wafer to the carrier wafer by magnetic attraction between the first magnetic material and the second magnetic material; grinding a back side of the wafer to make the wafer thin; and separating the wafer from the carrier wafer.
Abstract:
A semiconductor package includes a first semiconductor package, a second semiconductor package, and a package-connecting member. The first semiconductor package includes a first substrate, a chip stacking portion disposed on the first substrate and including a plurality of first semiconductor chips, and a first sealant for surrounding the chip stacking portion on the first substrate. The second semiconductor package includes a second substrate, at least one second semiconductor chip disposed on the second substrate, and a second sealant for surrounding the second semiconductor chip on the second substrate. The package-connecting member electrically connects the first semiconductor package and the second semiconductor package. The plurality of first semiconductor chips include a first chip including through silicon vias (TSVs) and a second chip electrically connected to the first chip via the TSVs, and the chip stacking portion includes an internal sealant for filling a space between the first chip and the second chip and extending to a side of the second chip.
Abstract:
A semiconductor package includes a semiconductor substrate and an electrode pad formed on the semiconductor substrate. The electrode pad includes a central portion and a peripheral portion, and a first pattern is located on the peripheral portion. A passivation layer is formed on the semiconductor substrate and the electrode pad. The passivation layer has an opening exposing the central portion of the electrode pad and a second pattern located on the first pattern. A seed layer is formed on the electrode pad and the passivation layer. The seed layer has a third pattern formed on the second pattern. A bump is formed on the seed layer and electrically connected to the electrode pad. An undercut is formed around the third pattern located under an edge of a lower portion of the bump.
Abstract:
An electronic device is provided, which includes a substrate having an electrically conductive contact pad thereon and an electrically conductive connection terminal on the contact pad. The connection terminal includes an electrically conductive pillar structure and a solder layer that extends on the pillar structure and contacts a protruding portion of a sidewall of the pillar structure. The pillar structure can include a lower pillar layer, a diffusion barrier layer on the lower pillar layer and an upper pillar layer on the diffusion barrier layer. In some additional embodiments of the invention, the protruding portion of the sidewall of the pillar structure includes an outermost portion of an upper surface of the diffusion barrier layer. This can be achieved by making a width of the diffusion barrier layer greater than a width of the upper pillar layer when viewed in transverse cross-section.
Abstract:
Methods of fabricating semiconductor packages are provided. One of the methods includes forming a protection layer including metal on a first surface of a substrate to cover a semiconductor device disposed on the first surface of the substrate, attaching a support substrate to the protection layer by using an adhesive member, processing a second surface of the substrate opposite to the protection layer to remove a part of the substrate, and detaching the support substrate from the substrate.
Abstract:
A method of manufacturing a semiconductor package includes forming a bonding layer on a carrier substrate, bonding an inner substrate to the carrier substrate, removing the carrier substrate, and forming a gap-filling portion by removing a portion of the bonding layer to expose a portion of a solder ball provided in the inner substrate. The inner substrate may be mounted on a package substrate and a semiconductor chip may be mounted on the inner substrate.
Abstract:
A semiconductor package includes a semiconductor substrate and an electrode pad formed on the semiconductor substrate. The electrode pad includes a central portion and a peripheral portion, and a first pattern is located on the peripheral portion. A passivation layer is formed on the semiconductor substrate and the electrode pad. The passivation layer has an opening exposing the central portion of the electrode pad and a second pattern located on the first pattern. A seed layer is formed on the electrode pad and the passivation layer. The seed layer has a third pattern formed on the second pattern. A bump is formed on the seed layer and electrically connected to the electrode pad. An undercut is formed around the third pattern located under an edge of a lower portion of the bump.