Abstract:
Resilient contact structures are mounted directly to bond pads on semiconductor dies, prior to the dies being singulated (separated) from a semiconductor wafer. This enables the semiconductor dies to be exercised (e.g., tested and/or burned-in) by connecting to the semiconductor dies with a circuit board or the like having a plurality of terminals disposed on a surface thereof. Subsequently, the semiconductor dies may be singulated from the semiconductor wafer, whereupon the same resilient contact structures can be used to effect interconnections between the semiconductor dies and other electronic components (such as wiring substrates, semiconductor packages, etc.). Using the all-metallic composite interconnection elements of the present invention as the resilient contact structures, burn-in can be performed at temperatures of at least 150.degree. C., and can be completed in less than 60 minutes.
Abstract:
The efficacy of electrical discharges for severing bond wires and/or for forming balls at the ends of bond wires (including bond wires already severed by alternative mechanisms) is improved by performing the electrical discharges in the presence of ultraviolet light. A "spark gap" is formed between an EFO electrode and the wire, one of which serves as the cathode of the spark gap. Preferably, the ultraviolet light is directed at the element serving as the cathode of the spark gap. Providing photoemission at the cathode element of the spark gap stabilizes arc/plasma formation and produces more reliable and predictable results. This technique may be used in conjunction with negative EFO systems or with positive EFO systems, and may benefit from either direct or field-assisted photoemission.
Abstract:
An apparatus and method providing improved interconnection elements and tip structures for effecting pressure connections between terminals of electronic components is described. The tip structure of the present invention has a sharpened blade oriented on the upper surface of the tip structure such that the length of the blade is substantially parallel to the direction of horizontal movement of the tip structure as the tip structure deflects across the terminal of an electronic component. In this manner, the sharpened substantially parallel oriented blade slices cleanly through any non-conductive layer(s) on the surface of the terminal and provides a reliable electrical connection between the interconnection element and the terminal of the electrical component.
Abstract:
Columns comprising a plurality of vertically aligned carbon nanotubes can be configured as electromechanical contact structures or probes. The columns can be grown on a sacrificial substrate and transferred to a product substrate, or the columns can be grown on the product substrate. The columns can be treated to enhance mechanical properties such as stiffness, electrical properties such as electrical conductivity, and/or physical contact characteristics. The columns can be mechanically tuned to have predetermined spring properties. The columns can be used as electromechanical probes, for example, to contact and test electronic devices such as semiconductor dies, and the columns can make unique marks on terminals of the electronic devices.
Abstract:
A planarizer for a probe card assembly. A planarizer includes a first control member extending from a substrate in a probe card assembly. The first control member extends through at least one substrate in the probe card assembly and is accessible from an exposed side of an exterior substrate in the probe card assembly. Actuating the first control member causes a deflection of the substrate connected to the first control member.
Abstract:
A probe card apparatus is configured to have a desired overall amount of compliance. The compliance of the probes of the probe card apparatus is determined, and an additional, predetermined amount of compliance is designed into the probe card apparatus so that the sum of the additional compliance and the compliance of the probes total the overall desired compliance of the probe card apparatus.
Abstract:
An electrical interconnect assembly and methods for making an electrical interconnect assembly. In one embodiment, an interconnect assembly includes a flexible wiring layer having a plurality of first contact elements and a fluid containing structure which is coupled to the flexible wiring layer. The fluid, when contained in the fluid containing structure, presses the flexible wiring layer towards a device under test to form electrical interconnections between the first contact elements and corresponding second contact elements on the device under test. In a further embodiment, an interconnect assembly includes a flexible wiring layer having a plurality of first contact terminals and a semiconductor substrate which includes a plurality of second contact terminals. A plurality of freestanding, resilient contact elements, in one embodiment, are mechanically coupled to one of the flexible wiring layers or the semiconductor substrate and make electrical contacts between corresponding ones of the first contact terminals and the second contact terminals. In another embodiment, a method of making electrical interconnections includes joining a flexible wiring layer and a substrate together in proximity and causing a pressure differential between a first side and a second side of the flexible wiring layer. The pressure differential deforms the flexible wiring layer and causes a plurality of first contact terminals on the flexible wiring layer to electrically connect with a corresponding plurality of second contact terminals on the substrate.
Abstract:
Devices and methods for providing, making, and/or using an electronic apparatus having a wall structure adjacent a resilient contact structure on a substrate. The electronic apparatus can include a substrate and a plurality of electrically conductive resilient contact structures, which can extend from the substrate. A first of the contact structures can be part of an electrical path through the electronic apparatus. A first electrically conductive wall structure can also extend from the substrate, and the first wall structure can be disposed adjacent one of the contact structures. The first wall structure can be electrically connected to a return current path within the electronic apparatus for an alternating current signal or power on the first contact structure.
Abstract:
A probe substrate for use in testing semiconductor devices can include a base substrate that can have first electrical terminals at a first pitch. One or more redistribution layers on the base substrate can include droplets of a conductive material that form redistribution traces extending from the first terminals to second electrical terminals at a second pitch different from the first pitch.
Abstract:
A test system for testing electronic devices can include a plurality of testers and a test station. The test station can include probes to contact the devices and the tester can control testing. Test data can be received by the test station from the testers using wireless communications links.