Abstract:
A semiconductor chip assembly includes a semiconductor device, a heat spreader, a conductive trace and an adhesive. The heat spreader includes a post and a base. The semiconductor device extends into a cavity in the post, is electrically connected to the conductive trace and is thermally connected to the heat spreader. The post extends upwardly from the base into an opening in the adhesive, and the base extends laterally from the post. The adhesive extends between the post and the conductive trace and between the base and the conductive trace. The conductive trace is located outside the cavity and provides signal routing between a pad and a terminal.
Abstract:
A suspension board with circuit includes a metal supporting board extending in a longitudinal direction, an insulating layer formed on the metal supporting board, and a conductive pattern formed on the insulating layer. In the suspension board with circuit, a magnetic-head mounting region where a slider with a magnetic head mounted thereon is mounted is located in one end portion in the longitudinal direction, and the thickness of the metal supporting board in at least a part of the magnetic-head mounting region is smaller than that in a region other than the magnetic-head mounting region.
Abstract:
There is provided an electronic component which comprises an insulating member on which an electronic element is mounted, and a thermal diffusion member on which the insulating member is mounted, wherein a thermal expansion coefficient of the insulating member is lower than a thermal expansion coefficient of the thermal diffusion member, and the insulating member is mounted in an embedded manner in a recess formed on a surface of the thermal diffusion member.
Abstract:
The present invention discloses a connecting part of conductor pattern, which is connected to a conductor pattern formed on a surface of an insulating substrate and which has at least one dent on the surface, and a conductor patterns-connected structure obtained by electrically connecting the connecting parts of conductor patterns, mentioned above, to each other with a conductive material which fills the inside of the dent of each connecting part and further is adhered to each connecting part.
Abstract:
A method for forming solder bumps for realizing high density mounting and a highly reliable method for mounting a semiconductor device is provided. A flat plate having a plurality of projections or recesses thereon is prepared; the flat plate is aligned to oppose an electronic component and a resin composition including a solder powder is supplied to a gap between the flat plate and the electronic component; the resin composition is annealed to melt the solder powder included in the resin composition for growing the solder powder up to the level of the surface of the flat plate by allowing the melted solder powder to self-assemble on terminals, so as to form solder bumps on the terminals; and the flat plate is removed after cooling and solidifying the solder bumps. Thus, the solder bumps having pits corresponding to the projections or having protrusions corresponding to the recesses are formed.
Abstract:
Magnetic field distribution and mutual capacitance control for transmission lines are provided. A first circuit board is fabricated by attaching a reference plane layer to a dielectric material layer, and attaching a first trace to the second surface of the dielectric material. A surface profile of the reference plane layer is modified to decrease a resistance of a return current signal path through the reference plane layer, to reduce a magnetic field coupling between the first trace and a second trace. A second circuit board is fabricated by attaching a reference plane layer to a dielectric material layer, attaching a trace to the dielectric material, and forming a solder mask layer on the dielectric material layer over the trace. An effective dielectric constant of the solder mask layer is modified to reduce or increase a mutual capacitance between the first trace and a second trace on the dielectric material.
Abstract:
Coupling reliability of a passive component is improved to increase the reliability of a semiconductor device. A first through hole is formed in a first electrode part of a first plate-like lead, and a second through hole is formed in a second electrode part of a second plate-like lead. As a result, at the first electrode part of the first plate-like lead, one external terminal of the passive component can be coupled to the first electrode parts on both sides of the first through hole while being laid across the first through hole. Also, at the second electrode part of the second plate-like lead, the other external terminal of the passive component can be coupled to the second electrode parts on both sides of the second through hole while being laid across the second through hole. Accordingly, at central portions both in the longitudinal and width directions of the passive component, the passive component is surrounded by sealing members. As a result, thermal stress applied to jointing materials such as solder can be reduced, improving the reliability of the semiconductor device (semiconductor package).
Abstract:
A semiconductor chip package having a metal bump and related method of fabrication are provided. The semiconductor chip package includes first and second bonding pads separated on a substrate, an insulating layer from on the substrate with first and second openings respectively exposing the first and second bonding pads, and an oxidation preventing pattern formed from a nickel layer and a silver layer and formed on the first and second bonding pads.
Abstract:
A manufacturing method of a solder ball disposing surface structure on a core board including: providing a core board with a first metal layer and an opposing metal bump-equipped second metal layer; forming resists on the first and second metal layers respectively; forming third, fourth and fifth openings in the resists; removing the first and second metal layers in the third and fourth openings to form first and second circuit layers and metal pads respectively; removing the metal bumps in the fifth openings to form metal flanges; removing the resists; forming first and second insulative protection layers on the first and second circuit layers and metal pads respectively; forming first and second openings in the first and second insulative protection layers to expose the first circuit layer as electrical connecting pads and expose the metal flanges respectively. Accordingly, increased contact surface area for mounting conductive elements prevents detachment thereof.
Abstract:
A test apparatus which uses a pair of substrates and housing to interconnect a host substrate (e.g., PCB) to an electronic device (e.g., semiconductor chip) to accomplish testing of the device. The apparatus includes a housing designed for being positioned on the PCB and have one of the substrates oriented therein during device engagement. The engaging contacts of the upper (second) substrate are sculpted to assure effective chip connection.