摘要:
A microelectronic assembly can include a circuit panel having first and second panel contacts at respective first and second surfaces thereof, and first and second microelectronic packages each having terminals mounted to the respective panel contacts. Each package can include a microelectronic element having a face and contacts thereon, a substrate having first and second surfaces, and terminals on the second surface configured for connecting the package with an external component. The terminals can include first terminals at positions within first and second parallel grids. The first terminals can be configured to carry address information usable by circuitry within the package to determine an addressable memory location from among all the available addressable memory locations of a memory storage array within the microelectronic element. Signal assignments of the first terminals in the first grid can be a mirror image of signal assignments of the first terminals in the second grid.
摘要:
A microelectronic assembly includes a semiconductor chip having chip contacts exposed at a first face and a substrate juxtaposed with a face of the chip. A conductive bond element can electrically connect a first chip contact with a first substrate contact of the substrate, and a second conductive bond element can electrically connect the first chip contact with a second substrate contact. The first bond element can have a first end metallurgically joined to the first chip contact and a second end metallurgically joined to the first substrate contact. A first end of the second bond element can be metallurgically joined to the first bond element. The second bond element may or may not touch the first chip contact or the substrate contact. A third bond element can be joined to ends of first and second bond elements which are joined to substrate contacts or to chip contacts. In one embodiment, a bond element can have a looped connection, having first and second ends joined at a first contact and a middle portion joined to a second contact.
摘要:
Wafer level chip packages including risers having sloped sidewalls and methods of fabricating such chip packages are disclosed. The inventive wafer level chip packages may advantageously be used in various microelectronic assemblies.
摘要:
A microelectronic unit can include a carrier structure having a front surface, a rear surface remote from the front surface, and a recess having an opening at the front surface and an inner surface located below the front surface of the carrier structure. The microelectronic unit can also include a microelectronic element having a top surface adjacent the inner surface, a bottom surface remote from the top surface, and a plurality of contacts at the top surface. The microelectronic unit can also include terminals electrically connected with the contacts of the microelectronic element. The terminals can be electrically insulated from the carrier structure. The microelectronic unit can also include a dielectric region contacting at least the bottom surface of the microelectronic element. The dielectric region can define a planar surface located coplanar with or above the front surface of the carrier structure.
摘要:
An interconnection substrate includes a plurality of electrically conductive elements of at least one wiring layer defining first and second lateral directions. Electrically conductive projections for bonding to electrically conductive contacts of at least one component external to the substrate, extend from the conductive elements above the at least one wiring layer. The conductive projections have end portions remote from the conductive elements and neck portions between the conductive elements and the end portions. The end portions have lower surfaces extending outwardly from the neck portions in at least one of the lateral directions. The substrate further includes a dielectric layer overlying the conductive elements and extending upwardly along the neck portions at least to the lower surfaces. At least portions of the dielectric layer between the conductive projections are recessed below a height of the lower surfaces.
摘要:
A microelectronic assembly may include a substrate containing a dielectric element having first and second opposed surfaces. The dielectric element may include a first dielectric layer adjacent the first surface, and a second dielectric layer disposed between the first dielectric layer and the second surface. A Young's modulus of the first dielectric layer may be at least 50% greater than the Young's modulus of the second dielectric layer, which is less than two gigapascal (GPa). A conductive structure may extend through the first and second dielectric layers and electrically connect substrate contacts at the first surface with terminals at the second surface. The substrate contacts may be joined with contacts of a microelectronic element through conductive masses, and a rigid underfill may be between the microelectronic element and the first surface. The terminals may be usable to bond the microelectronic assembly to contacts of a component external to the microelectronic assembly.
摘要:
A microelectronic assembly can include first, second and third stacked substantially planar elements, e.g., of dielectric or semiconductor material, and which may have a CTE of less than 10 ppm/° C. The assembly may be a microelectronic package and may incorporate active semiconductor devices in one, two or more of the first, second or third elements to function cooperatively as a system-in-a-package. In one example, an electrically conductive element having a minimum thickness less than 10 microns, may be formed by plating, and may electrically connect two or more of the first, second or third elements. The conductive element may entirely underlie a surface of another one of the substantially planar elements.
摘要:
A method for making an interconnection component is disclosed, including forming a plurality of metal posts extending away from a reference surface. Each post is formed having a pair of opposed end surface and an edge surface extending therebetween. A dielectric layer is formed contacting the edge surfaces and filling spaces between adjacent ones of the posts. The dielectric layer has first and second opposed surfaces adjacent the first and second end surfaces. The dielectric layer has a coefficient of thermal expansion of less than 8 ppm/° C. The interconnection component is completed such that it has no interconnects between the first and second end surfaces of the posts that extend in a lateral direction. First and second pluralities of wettable contacts are adjacent the first and second opposed surfaces. The wettable contacts are usable to bond the interconnection component to a microelectronic element or a circuit panel.
摘要:
A microelectronic package can include a substrate having first, second, and third apertures extending between first and second surfaces thereof, first, second, and third microelectronic elements each having a surface facing the first surface, and a plurality of terminals exposed at a central region of the second surface. The apertures can have first, second, and third axes extending in directions of the lengths of the respective apertures. The first and second axes can be parallel to one another. The third axis can be transverse to the first axis. The central region of the second surface of the substrate can be disposed between the first and second axes. The terminals can be configured to carry sufficient address information usable by circuitry within the package to determine an addressable memory location from among all the available addressable memory locations of a memory storage array within at least one of the microelectronic elements.
摘要:
A method of making microelectronic packages includes making a subassembly by providing a plate having a top surface, a bottom surface and openings extending between the top and bottom surfaces, attaching a compliant layer to the top surface of the plate, the compliant layer having openings that are aligned with the openings extending through the plate, and providing electrically conductive features on the compliant layer. After making the subassembly, the bottom surface of the plate is attached with the top surface of a semiconductor wafer so that the openings extending through the plate are aligned with contacts on the wafer. At least some of the electrically conductive features on the compliant layer are electrically interconnected with the contacts on the semiconductor wafer.