Abstract:
One embodiment of the present invention provides a device for providing a low noise power supply package to an IC in the mid-frequency range of 1 MHz to 3 GHz including installing in said package an array of embedded discrete ceramic capacitors, and optionally planar capacitor layers. A further embodiment provides a device for providing a low noise power supply package to an IC in the mid-frequency range of 1 MHz to 3 GHz including an array of embedded discrete ceramic capacitors with different resonance frequencies, arranged in such a way that the capacitor array's impedance vs frequency curve in the critical mid-frequency range yields impedance values at or below a targeted impedance value.
Abstract:
A method of forming a device associated with a via includes forming an opening or via, and forming at least a pair of conducting paths within the via. Also disclosed is a via having at pair of conducting paths therein.
Abstract:
Disclosed is a method of fabricating a multilayer printed circuit board, which enables the formation of a micro circuit able to be realized through a semi-additive process using the CTE and rigidity of a metal carrier on a thin substrate which is difficult to convey.
Abstract:
A package substrate 310 incorporating a substrate provided with a conductor layer 5, a conductive connecting pin 100 arranged to establish the electrical connection with a mother board and secured to the surface of the substrate, wherein a pad 16 for securing the conductive connecting pin is provided for the package substrate 310. The pad 16 is covered with an organic resin insulating layer 15 having an opening 18 through which the pad 16 is partially exposed to the outside. The conductive connecting pin 100 is secured to the pad exposed to the outside through the opening with a conductive adhesive agent 17 so that solution of the conductive connecting pin 100 from the substrate occurring, for example when mounting is performed is prevented.
Abstract:
A wiring substrate is provided with an insulating resin film; and first and second conductive films provided on the back side and top side of the insulating resin film, respectively. The wiring substrate includes a via formed to fill a recess provided in the insulating resin film and electrically connecting the top side and back side of the insulating resin film. The via includes a first metal film formed to cover the side wall of the recess, an oxide film formed to cover the first meal film, and a second metal film formed on the metal oxide film.
Abstract:
The invention relates to a multilayer printed circuit board structure comprising a stack of plurality of electrically insulating and/or electroconductive layers and at least one passive or active electrical component arranged inside the stack of layers, the component extending laterally only in part of the surface extension of the stack of layers. The invention also relates to a passive or active electrical component mounted on the stack, to an associated wiring, and to a corresponding production method. According to the invention, the insert is embedded between two electrically insulating liquid resin layers or prepreg layers extending over the entire surface and covering the insert on both sides, the insert being surrounded by a resin material that is liquefied by compression or lamination of the structure. The invention structure can be used in printed circuit board technology.
Abstract:
The present invention provides a method of producing a resistance element incorporated in a printed circuit board at an accuracy of resistance value of ±1% or less, at low cost and with a good yield while the resistance element formed by a resistor paste is incorporated. A method of producing a printed circuit board incorporating a resistance element includes: preparing a double-sided copper clad board having a first metallic foil on one face of an insulating base material thereof and a second metallic foil on the other face of the insulating base material thereof; providing at least a pair of electrodes on one of the metallic foils; printing a resistor paste between the electrodes to form a resistor; preparing a circuit board having at least one wiring layer; causing a layer on which the resistor paste is formed to oppose the circuit board to layer the double-sided copper clad board on the circuit board; forming openings in the first and the second metallic foils; and emitting laser through the openings to partly remove the insulating base material and the resistor paste to adjust resistance value. A conformal mask for etching may be formed on the second metallic foil to form openings in the insulating base material by etching to emit laser through the openings.
Abstract:
A printed circuit board and a method of manufacturing the printed circuit board are disclosed. The method of manufacturing a printed circuit board, by forming at least one bump for interlayer conduction on a surface of a board and stacking an insulation layer on the surface of the board, can include the operations of forming at least one dam on the surface of the board that surrounds a region corresponding to the bump, forming the bump by printing conductive paste onto the region corresponding to the bump, and stacking the insulation layer onto the surface of the board. This method can be utilized to improve productivity and resolve the problem of spreading.
Abstract:
The present invention has an object to provide a method for forming an oxide dielectric layer, which dielectric layer is formed by applying the sol-gel method, and is hardly damaged by an etching solution and excellent in dielectric characteristics such as a large electric capacitance. To achieve the object, the forming method of an oxide dielectric layer by applying a sol-gel method characterized by being provided with the following processes (a) to (c) is employed. Process (a): A solution preparing process of preparing a sol-gel solution for manufacturing an aiming oxide dielectric layer. Process (b): A coating process wherein stages of the sol-gel solution coating on the surface of a metal substrate followed by drying in an oxygen-containing atmosphere followed by pyrolysis in an oxygen-containing atmosphere sequentially is made one unit step; the one unit step is repeated twice or more times; and a pre-baking stage at 550-deg.C to 1000-deg.C in an inert gas-substituted atmosphere or the like is provided optionally between the one unit step and the next one unit step to control the film thickness. Process (c): A baking process of finally subjecting the coated metal substrate to a baking process at 550-deg.C to 1000-deg.C in an inert gas-substituted atmosphere or the like to finish the dielectric layer.
Abstract:
A method of forming a capacitive substrate in which at least one capacitive dielectric layer of material is screen or ink jet printed onto a conductor and the substrate is thereafter processed further, including the addition of thru-holes to couple selected elements within the substrate to form at least two capacitors as internal elements of the substrate. The capacitive substrate may be incorporated within a larger circuitized substrate, e.g., to form an electrical assembly. A method of making an information handling system including such substrates is also provided.