Abstract:
A semiconductor wafer has a plurality of first semiconductor die. A second semiconductor die is mounted to the first semiconductor die. A shielding layer is formed between the first and second semiconductor die. An electrical interconnect, such as conductive pillar, bump, or bond wire, is formed between the first and second semiconductor die. A conductive TSV can be formed through the first and second semiconductor die. An encapsulant is deposited over the first and second semiconductor die and electrical interconnect. A heat sink is formed over the second semiconductor die. An interconnect structure, such as a bump, can be formed over the second semiconductor die. A portion of a backside of the first semiconductor die is removed. A protective layer is formed over exposed surfaces of the first semiconductor die. The protective layer covers the exposed backside and sidewalls of the first semiconductor die.
Abstract:
A semiconductor device has a TSV semiconductor wafer with a cavity formed in a first surface of the wafer. A second cavity can be formed in a second surface of the wafer. A plurality of semiconductor die is mounted within the cavities. The semiconductor die can be mounted side-by-side and/or stacked within the cavity. Conductive TSV can be formed through the die. An encapsulant is deposited within the cavity over the die. A CTE of the die is similar to a CTE of the encapsulant. A first interconnect structure is formed over a first surface of the encapsulant and wafer. A second interconnect structure is formed over a second surface of the encapsulant and wafer. The first and second interconnect structure are electrically connected to the TSV wafer. A second semiconductor die can be mounted over the first interconnect structure with encapsulant deposited over the second die.
Abstract:
A semiconductor die has a conductive layer including a plurality of trace lines formed over a carrier. The conductive layer includes a plurality of contact pads electrically continuous with the trace lines. A semiconductor die has a plurality of contact pads and bumps formed over the contact pads. A plurality of conductive pillars can be formed over the contact pads of the semiconductor die. The bumps are formed over the conductive pillars. The semiconductor die is mounted to the conductive layer with the bumps directly bonded to an end portion of the trace lines to provide a fine pitch interconnect. An encapsulant is deposited over the semiconductor die and conductive layer. The conductive layer contains wettable material to reduce die shifting during encapsulation. The carrier is removed. An interconnect structure is formed over the encapsulant and semiconductor die. An insulating layer can be formed over the conductive layer.
Abstract:
A semiconductor device has a base substrate with first and second opposing surfaces. A first etch-resistant conductive layer is formed over the first surface of the base substrate. A second etch-resistant conductive layer is formed over the second surface of the base substrate. A first semiconductor die has bumps formed over contact pads on an active surface of the first die. The first die is mounted over a first surface of the first conductive layer. An encapsulant is deposited over the first die and base substrate. A portion of the base substrate is removed to form electrically isolated base leads between opposing portions of the first and second conductive layers. A second semiconductor die is mounted over the encapsulant and a second surface of the first conductive layer between the base leads. A height of the base leads is greater than a thickness of the second die.
Abstract:
A semiconductor device is made by forming an interconnect structure over a substrate. A semiconductor die is mounted to the interconnect structure. The semiconductor die is electrically connected to the interconnect structure. A ground pad is formed over the interconnect structure. An encapsulant is formed over the semiconductor die and interconnect structure. A shielding cage can be formed over the semiconductor die prior to forming the encapsulant. A shielding layer is formed over the encapsulant after forming the interconnect structure to isolate the semiconductor die with respect to inter-device interference. The shielding layer conforms to a geometry of the encapsulant and electrically connects to the ground pad. The shielding layer can be electrically connected to ground through a conductive pillar. A backside interconnect structure is formed over the interconnect structure, opposite the semiconductor die.
Abstract:
A semiconductor device has a first semiconductor die mounted over a carrier. An interposer frame has an opening in the interposer frame and a plurality of conductive pillars formed over the interposer frame. The interposer is mounted over the carrier and first die with the conductive pillars disposed around the die. A cavity can be formed in the interposer frame to contain a portion of the first die. An encapsulant is deposited through the opening in the interposer frame over the carrier and first die. Alternatively, the encapsulant is deposited over the carrier and first die and the interposer frame is pressed against the encapsulant. Excess encapsulant exits through the opening in the interposer frame. The carrier is removed. An interconnect structure is formed over the encapsulant and first die. A second semiconductor die can be mounted over the first die or over the interposer frame.
Abstract:
A semiconductor device is made by mounting an insulating layer over a temporary substrate. A via is formed through the insulating layer. The via is filled with conductive material. A semiconductor die has a stress sensitive region. A dam is formed around the stress sensitive region. The semiconductor die is mounted to the conductive via. The dam creates a gap adjacent to the stress sensitive region. An encapsulant is deposited over the semiconductor die. The dam blocks the encapsulant from entering the gap. The temporary substrate is removed. A first interconnect structure is formed over the semiconductor die. The gap isolates the stress sensitive region from the first interconnect structure. A shielding layer or heat sink can be formed over the semiconductor die. A second interconnect structure can be formed over the semiconductor die opposite the first interconnect structure.
Abstract:
A semiconductor device has a first semiconductor die mounted over a carrier. Wettable contact pads can be formed over the carrier. A second semiconductor die is mounted over the first semiconductor die. The second die is laterally offset with respect to the first die. An electrical interconnect is formed between an overlapping portion of the first die and second die. A plurality of first conductive pillars is disposed over the first die. A plurality of second conductive pillars is disposed over the second die. An encapsulant is deposited over the first and second die and first and second conductive pillars. A first interconnect structure is formed over the encapsulant, first conductive pillars, and second die. The carrier is removed. A second interconnect structure is formed over the encapsulant, second conductive pillars, and first die. A third conductive pillar is formed between the first and second build-up interconnect structures.
Abstract:
A semiconductor device has a first semiconductor die with a shielding layer formed over its back surface. The first semiconductor die is mounted to a carrier. A first insulating layer is formed over the shielding layer. A second semiconductor die is mounted over the first semiconductor die separated by the shielding layer and first insulating layer. A second insulating layer is deposited over the first and second semiconductor die. A first interconnect structure is formed over the second semiconductor die and second insulating layer. A second interconnect structure is formed over the first semiconductor die and second insulating layer. The shielding layer is electrically connected to a low-impedance ground point through a bond wire, RDL, or TSV. The second semiconductor die may also have a shielding layer formed on its back surface. The semiconductor die are bonded through the metal-to-metal shielding layers.
Abstract:
A semiconductor device has a semiconductor die mounted over a carrier. An encapsulant is deposited over the semiconductor die and carrier. An insulating layer is formed over the semiconductor die and encapsulant. A plurality of first vias is formed through the insulating layer and semiconductor die while mounted to the carrier. A plurality of second vias is formed through the insulating layer and encapsulant in the same direction as the first vias while the semiconductor die is mounted to the carrier. An electrically conductive material is deposited in the first vias to form conductive TSV and in the second vias to form conductive TMV. A first interconnect structure is formed over the insulating layer and electrically connected to the TSV and TMV. The carrier is removed. A second interconnect structure is formed over the semiconductor die and encapsulant and electrically connected to the TSV and TMV.