Abstract:
A method of applying inductive heating to join an integrated circuit chip to an electrical substrate using solder bumps including applying a magnetic field to a magnetic liner in thermal contact with a solder bump on the integrated circuit chip. The magnetic field causes Joule heating in the magnetic liner sufficient to melt the solder bump, which has a lower portion embedded in a first dielectric layer and an upper portion at least partially embedded in a second dielectric layer. The lower portion is in electrical contact with a conductive pad, the first dielectric layer is above the conductive pad and the second dielectric layer is on top of the first dielectric layer. The duration of application of the magnetic field is controlled to achieve a joining temperature that is approximately halfway between the storage and operating temperatures of the integrated circuit chip.
Abstract:
A method and structure are provided to enable wire bond connections over active and/or passive devices and/or low-k dielectrics, formed on an Integrated Circuit die. A semiconductor substrate having active and/or passive devices is provided, with interconnect metallization formed over the active and/or passive devices. A passivation layer formed over the interconnect metallization is provided, wherein openings are formed in the passivation layer to an upper metal layer of the interconnect metallization. Compliant metal bond pads are formed over the passivation layer, wherein the compliant metal bond pads are connected through the openings to the upper metal layer, and wherein the compliant metal bond pads are formed substantially over the active and/or passive devices. The compliant metal bond pads may be formed of a composite metal structure.
Abstract:
A semiconductor device structure and a manufacturing method are provided. The method includes forming a conductive pillar over a semiconductor substrate. The method also includes forming a solder layer over the conductive pillar. The method further includes forming a water-soluble flux over the solder layer. In addition, the method includes reflowing the solder layer to form a solder bump over the conductive pillar and form a sidewall protection layer over a sidewall of the conductive pillar during the solder layer is reflowed.
Abstract:
The embodiments described provide elongated bonded structures near edges of packaged structures free of solder wetting on sides of copper posts substantially facing the center of the packaged structures. Solder wetting occurs on other sides of copper posts of these bonded structures. The elongated bonded structures are arranged in different arrangements and reduce the chance of shorting between neighboring bonded structures. In addition, the elongated bonded structures improve the reliability performance.
Abstract:
Methods of packaging semiconductor devices and packaged semiconductor devices are disclosed. In some embodiments, a method of packaging semiconductor devices includes coupling integrated circuit dies to a substrate, and disposing a molding material around the integrated circuit dies. A cap layer is disposed over the molding material and the plurality of integrated circuit dies.
Abstract:
An elongated bump structure for semiconductor devices is provided. An uppermost protective layer has an opening formed therethrough. A pillar is formed within the opening and extending over at least a portion of the uppermost protective layer. The portion extending over the uppermost protective layer exhibits a generally elongated shape. In an embodiment, the position of the opening relative to the portion of the bump structure extending over the uppermost protective layer is such that a ratio of a distance from an edge of the opening to an edge of the bump is greater than or equal to about 0.2. In another embodiment, the position of the opening is offset relative to center of the bump.
Abstract:
Provided is a method of fabricating a semiconductor device. In one embodiment, the method includes forming at least one unit device in a substrate and on a front side of the substrate, forming a through-silicon via (TSV) structure apart from the at least one unit device to substantially vertically penetrate the substrate, the TSV structure having a back end including a concave portion, forming an internal circuit on the front side of the substrate and a front end of the TSV structure to be electrically connected to the at least one unit device and the front end of the TSV structure, forming a front side bump on the front side of the substrate to be electrically connected to the front end of the TSV structure, forming a redistribution layer on a back side of the substrate to be electrically connected to the back end of the TSV structure, and forming a back side bump to be electrically connected to the redistribution layer.
Abstract:
A method of forming a bond pad structure is provided. The method includes forming a first conductive layer over a substrate and depositing a first dielectric layer over the first conductive layer. The first dielectric layer is patterned to form a contiguous planar path substantially parallel to a top surface of the substrate. Patterning the first dielectric layer includes defining a dielectric region of the first dielectric layer surrounded by a portion of the contiguous planar path, and forming a first via hole in the dielectric region. The contiguous planar path and the via hole are filled with a conductive material. The conductive material in the contiguous planar path forms a second conductive layer, and the contiguous planar path extends from a first lateral side wall of the second conductive layer to a second lateral sidewall of the second conductive layer. A bond pad is formed over the second conductive layer, and the bond pad is electrically connected to the second conductive layer.
Abstract:
Integrated circuits including copper pillar structures and methods for fabricating the same are disclosed. In one exemplary embodiment, an integrated circuit includes a last metal layer and a passivation layer disposed over the last metal layer, both the last metal and passivation layers being disposed over an integrated circuit active device on a semiconductor substrate. The integrated circuit further includes a copper pillar structure disposed partially within a first portion of the passivation layer and immediately over the last metal layer. The first portion of the passivation layer is defined by first and second sidewalls of the passivation layer and an upper surface of the last metal layer. The copper pillar structure includes a liner formed along the first and second sidewalls and over the upper surface of the last metal and a copper material within the liner. The copper pillar structure, including both the liner and the copper material within the liner, further extends to a height above an upper surface of the passivation layer.
Abstract:
A semiconductor device having a semiconductor substrate is provided. The semiconductor device has a metal structure over the semiconductor substrate. The metal structure is configured to receive a bump. The semiconductor device further has a conductive trace between the semiconductor substrate and the metal structure. The conductive trace is configured to connect to a power source. When an electric current from the power source passes through the conductive trace, an electromagnetic field is generated at the conductive trace. The position of the bump is adjusted in response to the electromagnetic field.