摘要:
In order to achieve the highly reliable and highly functional semiconductor device capable of the high-speed transmission by stacking thin chips and substrates, a connecting process and a connecting structure capable of making a solid connection at a low temperature with a low load and maintaining the shape of a connecting portion even if the connecting portion is heated in the stacking process and the subsequent mounting process are provided. In a semiconductor device in which semiconductor chips or wiring boards on which semiconductor chips are mounted are stacked, a connecting structure between electrodes of the stacked semiconductor chips or wiring boards includes a pair of electrodes mainly made of Cu and a solder layer made of Sn—In based alloy sandwiched between the electrodes, and Sn—Cu—Ni intermetallic compounds are dispersed in the solder layer.
摘要:
In order to achieve the highly reliable and highly functional semiconductor device capable of the high-speed transmission by stacking thin chips and substrates, a connecting process and a connecting structure capable of making a solid connection at a low temperature with a low load and maintaining the shape of a connecting portion even if the connecting portion is heated in the stacking process and the subsequent mounting process are provided. In a semiconductor device in which semiconductor chips or wiring boards on which semiconductor chips are mounted are stacked, a connecting structure between electrodes of the stacked semiconductor chips or wiring boards includes a pair of electrodes mainly made of Cu and a solder layer made of Sn—In based alloy sandwiched between the electrodes, and Sn—Cu—Ni intermetallic compounds are dispersed in the solder layer.
摘要:
A method of forming narrow-pitch flip-chip bonding electrodes and wire bonding electrodes at the same time is provided so as to reduce the cost of a substrate. In addition, a low-cost solder supply method and a flip-chip bonding method to a thin Au layer are provided. A stacked layer of a Cu layer 23 and a Ni layer 24 is employed as the electrode structure, and an Au layer 25 is plated on the outer periphery thereof. In the flip-chip bonding, dissolution of Au into the solder is minimized by employing a metal jet system in the soldering to the electrodes, so that the formation of Sn—Au having a high melting point is prevented, and at the same time, the wire-bondable Au layer 25 is ensured.
摘要:
A method of manufacturing a semiconductor device includes the steps of: grinding the rear surface of a semiconductor wafer to reduce its thickness; flattening the rear surface of the semiconductor wafer; dividing the semiconductor wafer into a plurality of semiconductor chips; forming gold bumps on the electrodes of the plurality of semiconductor chips; applying NCP to the front surface of a packaging board; and arranging the semiconductor chips over the packaging board through the NCP and pressing the back surfaces of the semiconductor chips to flip-chip bond the semiconductor chips to the packaging board. Therefore, it is possible to prevent NCP from rising onto the back surfaces of the semiconductor chips at the time of flip-chip bonding, whereby separation and cracking caused by a high-temperature treatment for assembly and mounting of a semiconductor device can be prevented and the reliability of the semiconductor device can be improved.
摘要:
To improve reliability of a semiconductor device, in a flip-chip bonding step, a solder material that is attached to a tip end surface of a projecting electrode in advance and a solder material that is applied in advance over a terminal (bonding lead) are heated and thereby integrated and electrically connected to each other. The terminal includes a wide part (a first portion) with a first width W1 and a narrow part (a second portion) with a second width W2. When the solder material is heated, the thickness of the solder material arranged over the narrow part becomes smaller than the thickness of the solder material arranged in the wide part. Then, in the flip-chip bonding step, a projecting electrode is arranged over the narrow part and bonded onto the narrow part. Thus, the amount of protrusion of the solder material can be reduced.
摘要:
To improve reliability of a semiconductor device, in a flip-chip bonding step, a solder material that is attached to a tip end surface of a projecting electrode in advance and a solder material that is applied in advance over a terminal (bonding lead) are heated and thereby integrated and electrically connected to each other. The terminal includes a wide part (a first portion) with a first width W1 and a narrow part (a second portion) with a second width W2. When the solder material is heated, the thickness of the solder material arranged over the narrow part becomes smaller than the thickness of the solder material arranged in the wide part. Then, in the flip-chip bonding step, a projecting electrode is arranged over the narrow part and bonded onto the narrow part. Thus, the amount of protrusion of the solder material can be reduced.
摘要:
A method of manufacturing a semiconductor device, includes the steps of: grinding the rear surface of a semiconductor wafer to reduce its thickness; flattening the rear surface of the semiconductor wafer; dividing the semiconductor wafer into a plurality of semiconductor chips; forming gold bumps on the electrodes of the plurality of semiconductor chips; applying NCP to the front surface of a packaging board; and arranging the semiconductor chips over the packaging board through the NCP and pressing the back surfaces of the semiconductor chips to flip-chip bond the semiconductor chips to the packaging board. Therefore, it is possible to prevent NCP from rising onto the back surfaces of the semiconductor chips at the time of flip-chip bonding, whereby separation and cracking caused by a high-temperature treatment for assembly and mounting of a semiconductor device can be prevented and the reliability of the semiconductor device can be improved.
摘要:
A method of manufacturing a semiconductor device obtained by laminating a first semiconductor chip and a second semiconductor chip with different planar sizes when seen in a plan view on a wiring board via an adhesive material, in which the second semiconductor chip with a relatively larger planar size is mounted on the first semiconductor chip with a relatively smaller planar size. Also, after the first and second semiconductor chips are mounted, the first and second semiconductor chips are sealed with resin. Here, before sealing with the resin, a gap between the second semiconductor chip and the wiring board is previously sealed with the adhesive material used when the first and second semiconductor chips are mounted.
摘要:
A method of manufacturing a semiconductor device includes the steps of: grinding the rear surface of a semiconductor wafer to reduce its thickness; flattening the rear surface of the semiconductor wafer; dividing the semiconductor wafer into a plurality of semiconductor chips; forming gold bumps on the electrodes of the plurality of semiconductor chips; applying NCP to the front surface of a packaging board; and arranging the semiconductor chips over the packaging board through the NCP and pressing the back surfaces of the semiconductor chips to flip-chip bond the semiconductor chips to the packaging board. Therefore, it is possible to prevent NCP from rising onto the back surfaces of the semiconductor chips at the time of flip-chip bonding, whereby separation and cracking caused by a high-temperature treatment for assembly and mounting of a semiconductor device can be prevented and the reliability of the semiconductor device can be improved.
摘要:
In the assembly of a semiconductor device, improvement in the reliability of flip chip bonding is aimed at. By forming a dummy terminal in the end portion of the row of a plurality of terminals for a flip chip in the package substrate, the flow of flux or solder can be suppressed with the dummy terminal, and a solder layer can be formed on the plurality of terminals for a flip chip. Thereby, the thickness of the solder layer formed on each terminal for a flip chip can fully be secured, without making solder adhere to the wire connection terminal closely formed to the terminal for a flip chip. As a result, improvement in the reliability of flip chip bonding can be aimed at.