摘要:
[Problem] To provide an electrode connection structure and the like in which a plurality of elongated leads are arranged in parallel and a longitudinal side surface of each lead is connected to an electrode by plating treatment with high quality.[Solution] An electrode connection structure in which a semiconductor chip 12 electrode and/or a substrate electrode is connected to a plurality of elongated leads 11 of a lead frame 10 by plating. The plurality of elongated leads 11 of the lead frame 10 are arranged in parallel, and a longitudinal side surface of each lead 11 is connected to the semiconductor chip 12 electrode and/or the substrate electrode by plating. At a connection portion of a first connection surface 13 of the semiconductor chip 12 electrode and/or the substrate electrode, the first connection surface 13 being connected to the leads 11, and a second connection surface 14 in the longitudinal side surface of each lead 11, the second connection surface 14 being connected to the first connection surface 13, a distance between the first connection surface 13 and the second connection surface 14 continuously increases from an edge portion 15 of the second connection surface 14, the edge portion 15 being in contact with the first connection surface 13, toward an outer portion 16 of the second connection surface 14.
摘要:
A power semiconductor module device includes: a plurality of semiconductor elements that are arranged at intervals and flush with each other on a plane; an insulating support that fixes the semiconductor elements; a first thick-film plating layer that is formed as a first-surface-side electrode that electrically connects the semiconductor elements to each other on at least one surface of a front surface side and a rear surface side. The first thick-film plating layer supports the semiconductor elements from at least one of an upper direction and a lower direction.
摘要:
An electrode connection structure includes: a first electrode of an electrical circuit; and a second electrode of the electrical circuit that is electrically connected to the first electrode. The first and second electrodes are oppositely disposed in direct or indirect contact with each other. A plated lamination is substantially uniformly formed by plating process from a surface of a contact region and opposed surfaces of the first and second electrodes. A void near the surface of the contact region is filled by formation of the plated lamination. Portions of the plated lamination formed from the opposed surfaces of the first and second electrodes in a region other than the contact region are not joined together.
摘要:
A semiconductor element bonding structure capable of strongly bonding a semiconductor element and an object to be bonded and relaxing thermal stress caused by a difference in thermal expansion, by interposing metal particles and Ni between the semiconductor element and the object to be bonded, the metal particles having a lower hardness than Ni and having a micro-sized particle diameter. A plurality of metal particles 5 (aluminum (Al), for example) having a lower hardness than nickel (Ni) and having a micro-sized particle diameter are interposed between a semiconductor chip 3 and a substrate 2 to be bonded to the semiconductor chip 3, and the metal particles 5 are fixedly bonded by the nickel (Ni). Optionally, aluminum (Al) or an aluminum alloy (Al alloy) is used as the metal particles 5, and aluminum (Al) or an aluminum alloy (Al alloy) is used on the surface of the semiconductor chip 3 and/or the surface of the substrate 2.
摘要:
It is an object of the present invention to provide a power semiconductor device, which is capable of being operable regardless of thermal stress generation, reducing a heat generation from wire, securing the reliability of bonding portion when the device is used for dealing with a large amount current and/or under a high temperature atmosphere, a method of manufacturing the device and a bonding wire. In a power semiconductor device in which a metal electrode (die electrode 3) on a power semiconductor die 2 and another metal electrode (connection electrode 4) are connected by metal wire 5 using wedge bonding connection, the metal wire is Ag or Ag alloy wire of which diameter is greater than 50 μm and not greater than 2 mm and the die 3 has thereon one or more metal and/or alloy layers, each of the layer(s) being 50 Å or more in thickness and a metal for the layer is selected from Ni, Cr, Cu, Pd, V, Ti, Pt, Zn, Ag, Au, W and Al.
摘要:
A semiconductor element bonding structure capable of strongly bonding a semiconductor element and an object to be bonded and relaxing thermal stress caused by a difference in thermal expansion, by interposing metal particles and Ni between the semiconductor element and the object to be bonded, the metal particles having a lower hardness than Ni and having a micro-sized particle diameter. A plurality of metal particles 5 (aluminum (Al), for example) having a lower hardness than nickel (Ni) and having a micro-sized particle diameter are interposed between a semiconductor chip 3 and a substrate 2 to be bonded to the semiconductor chip 3, and the metal particles 5 are fixedly bonded by the nickel (Ni). Optionally, aluminum (Al) or an aluminum alloy (Al alloy) is used as the metal particles 5, and aluminum (Al) or an aluminum alloy (Al alloy) is used on the surface of the semiconductor chip 3 and/or the surface of the substrate 2.
摘要:
[Problem] To provide an electrode connection structure and the like in which a plurality of elongated leads are arranged in parallel and a longitudinal side surface of each lead is connected to an electrode by plating treatment with high quality. [Solution] An electrode connection structure in which a semiconductor chip 12 electrode and/or a substrate electrode is connected to a plurality of elongated leads 11 of a lead frame 10 by plating. The plurality of elongated leads 11 of the lead frame 10 are arranged in parallel, and a longitudinal side surface of each lead 11 is connected to the semiconductor chip 12 electrode and/or the substrate electrode by plating. At a connection portion of a first connection surface 13 of the semiconductor chip 12 electrode and/or the substrate electrode, the first connection surface 13 being connected to the leads 11, and a second connection surface 14 in the longitudinal side surface of each lead 11, the second connection surface 14 being connected to the first connection surface 13, a distance between the first connection surface 13 and the second connection surface 14 continuously increases from an edge portion 15 of the second connection surface 14, the edge portion 15 being in contact with the first connection surface 13, toward an outer portion 16 of the second connection surface 14.
摘要:
A power semiconductor module device includes: a plurality of semiconductor elements that are arranged at intervals and flush with each other on a plane; an insulating support that fixes the semiconductor elements; a first thick-film plating layer that is formed as a first-surface-side electrode that electrically connects the semiconductor elements to each other on at least one surface of a front surface side and a rear surface side. The first thick-film plating layer supports the semiconductor elements from at least one of an upper direction and a lower direction.
摘要:
The present invention can give a joining structure using metal nanoparticles to join the same types or different types of metal where when one surface metal is Al based, the parts are joined through a joining layer containing Ni nanoparticles, whereby a good joining strength is obtained. Further, by using two joining layers (6, 8) including metal nanoparticles to sandwich metal foil (7) so as to form a joining layer and joining the same type or different types of surface metals (3-4) through this joining layer, it is possible to ease the thermal stress due to the difference in amounts of thermal expansion of joined members which have two surface metals.
摘要:
An electrode connection structure includes: a first electrode of an electrical circuit; and a second electrode of the electrical circuit that is electrically connected to the first electrode. The first and second electrodes are oppositely disposed in direct or indirect contact with each other. A plated lamination is substantially uniformly formed by plating process from a surface of a contact region and opposed surfaces of the first and second electrodes. A void near the surface of the contact region is filled by formation of the plated lamination. Portions of the plated lamination formed from the opposed surfaces of the first and second electrodes in a region other than the contact region are not joined together.