Abstract:
Through holes 36 are formed to penetrate a core substrate 30 and lower interlayer resin insulating layers 50, and via holes 66 are formed right on the through holes 36, respectively. Due to this, the through holes 36 and the via holes 66 are arranged linearly, thereby making it possible to shorten wiring length and to accelerate signal transmission speed. Also, since the through holes 36 and the via holes 66 to be connected to solder bumps 76 (conductive connection pins 78), respectively, are directly connected to one another, excellent reliability in connection is ensured.
Abstract:
A method of producing a multilayered substrate having: a first face being provided with pads bondable to electrode terminals of a semiconductor element, and a body containing a plurality of wiring line layers and insulation layers successively formed from the side of the multilayered substrate at which the face for mounting a semiconductor element is located, wherein the final insulating layer forms provides a second face of the multilayered substrate. The successive wiring line layers are connected by vias, and the second face has external connection terminal pads. The pads on the first face are formed on a metal sheet, a first layer of insulating material is formed on the metal sheet so as to cover the pads formed thereon, holes are formed through the insulating material to expose the end face of the pad, and a patterned metal layer is formed to provide a layer of wiring lines and vias connecting the pads with the wiring line on the layer of insulating material. Subsequently, layers of insulation material are formed to cover the layers of wiring lines, where vias are formed in the insulating material layers, and then patterned metal wiring line layers and filled vias are formed, until the predetermined number of sets of an insulation layer and a wiring line layer is obtained. The metal sheet is then removed.
Abstract:
Chip capacitors 20 are provided in a printed circuit board 10. In this manner, the distance between an IC chip 90 and each chip capacitor 20 is shortened, and the loop inductance is reduced. In addition, the chip capacitors 20 are accommodated in a core substrate 30 having a large thickness. Therefore, the thickness of the printed circuit board does not become large.
Abstract:
In a capacitor 10, a first electrode 21, a dielectric layer 23, a solid electrolytic layer 50 and a second electrode 31 are provided. In a manufacturing process, the dielectric layer 23 and a first solid electrolytic layer 24 formed by a chemical polymerization film are provided on the first electrode 21 side, while a second solid electrolytic layer 32 formed by an electrolytic polymerization film is provided on the second electrode 31 side. Then, the solid electrolytic layers are bonded to each other.
Abstract:
A method of plating a metal layer over isolated pads on a semiconductor package substrate is proposed. This substrate is formed with a plurality of conductive blind vias. The isolated pads are formed on a surface of the substrate, each having a plating line extending towards one blind via but electrically insulated from the blind via by an electrically insulating region. A conductive film covers the surface of the substrate having the isolated pads, and a photoresist layer is formed over the conductive film. The photoresist layer has openings for exposing a portion of the conductive film covering the isolated pads. The exposed portion of the conductive film is removed, to allow a metal layer to be plated on the isolated pads. Then, the photoresist layer and the remainder of the conductive film are removed, and the electrical insulation between the isolated pads and the blind vias is restored.
Abstract:
One of a plurality of capacitors embedded in a printed circuit structure includes a first electrode (415) overlaying a first substrate layer (505) of the printed circuit structure, a crystallized dielectric oxide core (405) overlaying the first electrode, a second electrode (615) overlying the crystallized dielectric oxide core, and a high temperature anti-oxidant layer (220) disposed between and contacting the crystallized dielectric oxide core and at least one of the first and second electrodes. The crystallized dielectric oxide core has a thickness that is less than 1 micron and has a capacitance density greater than 1000 pF/mm2. The material and thickness are the same for each of the plurality of capacitors. The crystallized dielectric oxide core may be isolated from crystallized dielectric oxide cores of all other capacitors of the plurality of capacitors.
Abstract translation:嵌入印刷电路结构中的多个电容器之一包括覆盖印刷电路结构的第一衬底层(505)的第一电极(415),覆盖第一电极的结晶化电介质氧化物芯(405),第二电极 615),以及设置在结晶的电介质氧化物芯和第一和第二电极中的至少一个之间并与其接触的高温抗氧化剂层(220)。 结晶的电介质氧化物芯的厚度小于1微米,电容密度大于1000pF / mm 2。 多个电容器的材料和厚度相同。 结晶的电介质氧化物芯可以与多个电容器的所有其它电容器的结晶的电介质氧化物芯隔离。
Abstract:
The present invention provides a method of fabricating a circuit substrate. First, a substrate having first pads and second pads is provided, wherein the first pads and second pads are arranged respectively on a first surface and a second surface of the substrate. The first pads are electrically connected to the second pads. Next, a conductive seed layer is formed on the second surface of the circuit substrate. Thereafter, a first conductive layer and a second conductive layer are electroplated respectively over the first pads and the second pads. Afterwards, the conductive seed layer is patterned.
Abstract:
A conductive film has a plurality of clearances (openings) and a plurality of auxiliary clearances. The plurality of clearances and the plurality of auxiliary clearances are formed to have such numerical apertures and locations that generate no bias in the distribution of conductive film in consideration of the entire conductive film. The conductive film can disperse stress caused by thermal expansion etc., to ease by having the plurality of clearances and the plurality of auxiliary clearances. Accordingly, the conductive film is less prone to being peeled off the insulating film. Further, since the distribution of conductive film is substantially uniform as a whole, the transfer characteristics that are fixed by the distribution become substantially uniform as a whole.
Abstract:
A thin-film capacitor comprising a first thin-film electrode, a second thin-film electrode, and a thin dielectric film arranged therebetween and formed of a tantalum oxide layer and an aluminum oxide layer neighboring thereto. A method of producing such a thin-film capacitor is also disclosed.
Abstract:
A conductive sheet according to the present invention includes: an insulating substrate having at least one via hole, a ground conductive layer; and a top conductive layer, and characterized in that the via hole is a fine pore penetrating through the insulating substrate, the ground conductive layer is formed by a sputtering method or a vapor deposition method on all of a surface of the insulating substrate, the top conductive layer is formed on all of or part of a surface of the ground conductive layer, and the via hole is filled with the top conductive layer.