Abstract:
A thin type printed circuit board with an enclosed capacitor of a large capacitance. The printed circuit board includes metal sheet 11 having roughed surface presenting micro-irregularities, a dielectric film for capacitor 12 covering the surface of the metal sheet, and a first electrically conductive layer of electrically conductive resin 13 covering the surface of the dielectric film. A second electrically conductive layer 14 is provided on the surface of the first electrically conductive layer in a region of via for cathode side connection 18. The metal sheet and the first and second electrically conductive layers are encapsulated by resin 15. The via for cathode side connection 18, obtained on boring through the resin 15 until reaching the second electrically conductive layer 14, is coated with an electrode 20. A via for anode side connection 19 obtained on boring through the resin 15 is coated with an electrode 21 that is insulated from the second electrically conductive layer 13 by the resin 15.
Abstract:
A circuitized substrate which utilizes an underlying conductive layer coupled to a pad on the substrate to assure a reinforced pad which will not be damaged or removed from the substrate when subjected to a significant load. Two or more pads can be similarly provided and coupled to the conductive layer, e.g., the layer being a common (ground) layer. An information handling system (e.g., a personal computer) utilizing the substrate is also provided.
Abstract:
An object of the present invention is to reduce the number of steps necessary for connecting between a wiring circuit board and a printed circuit board and to achieve a low-cost wiring circuit board. A wiring circuit board (2) includes an insulating film (4), a bump (6), an etching barrier layer (8), and a wiring layer (10). The bump (6) is made of copper and formed to penetrate through the insulating film (4). A top face of the bump (6) is exposed at a surface of the insulating film (4) flush therewith. The etching barrier layer (8) is made of nickel (Ni) and formed underneath the bump (6). The bump (6) is connected to the wiring layer (10) through the etching barrier layer (8). A solder ball (12) is formed on the top face of the bump (6). A printed circuit board (14) as a rigid board is connected to the wiring circuit board (2). A wiring layer (16) is connected to the bump (6) through the solder ball (12) to thereby mount the wiring circuit board (2) to the printed circuit board (14).
Abstract:
A method of manufacturing a printed wiring board, enabling insertion components to be mounted on both sides thereof, including: a) providing first and second copper-clad laminates, including plated through-holes thereon; b) hot-pressing the laminates with each other and a first prepreg bonding sheet therebetween, so that the through-holes are closed by the prepreg to form non-through holes; c) laminating a second prepreg on each of the surfaces of the composite laminate; d) covering the opening of respective non-through holes with a heat resistant resin film; e) laminating one-side copper-clad laminate on each of the surfaces of the product of (d), with the copper side out, followed by hot-pressing; f) etching the copper sides to form outer layer circuit patterns; g) removing the base material layers covering the openings of the non-through holes; and h) removing the heat resistant resin films of the openings of the non-through holes.
Abstract:
A method of fabricating multi-layer circuit structure with embedded polymer resistors comprises forming a plurality of electrically conductive paths on a first substrate, forming polymer resistor paste between first and second of the electrically conductive paths on the first substrate, curing the polymer resistor paste by exposure to ultraviolet radiation to thereby solidify the shape of the polymer resistor paste, heating the polymer resistor paste to produce a first resistor, forming a plurality of electrically conductive paths on a second substrate, bonding the first and second substrates with an adhesive, wherein the first resistor is positioned between the first and second substrates.
Abstract:
A method and apparatus for supporting a microelectronic substrate. The apparatus can include a microelectronic substrate and a support member carrying the microelectronic substrate. The apparatus can further include a first connection structure carried by the support member. The first connection structure can have a first bond site configured to receive a flowable conductive material, and can further have at least two first elongated members connected and extending outwardly from the first bond site. Each first elongated member can be configured to receive at least a portion of the flowable conductive material from the first bond site, with none of the first elongated members being electrically coupled to the microelectronic substrate. The assembly can further include a second connection structure that is electrically coupled to the microelectronic substrate and that can include second elongated members extending away from a second bond site. The number of second elongated members can be equal to the number of first elongated members.
Abstract:
Techniques for reducing the number of layers in a multilayer signal routing device are disclosed. In one particular exemplary embodiment, the techniques may be realized as a method wherein the multilayer signal routing device has a plurality of electrically conductive signal path layers for routing a plurality of electrical signals thereon. The method may comprise forming a plurality of electrically conductive vias in the multilayer signal routing device for electrically connecting at least two of the plurality of electrically conductive signal path layers, wherein the plurality of vias are arranged so as to form at least one channel in at least one other of the plurality of electrically conductive signal path layers. The method may also comprise grouping at least a portion of the plurality of electrical signals based at least in part upon their proximity to the at least one channel so that they may be efficiently routed therein.
Abstract:
The present invention has for its object to provide a process for manufacturing multilayer printed circuit boards which is capable of simultaneous via hole filling and formation of conductor circuit and via holes of good crystallinity and uniform deposition can be constructed on a substrate and high-density wiring and highly reliable conductor connections can be realized without annealing. The present invention is related to a process for manufacturing multilayer printed circuit boards which comprises disposing an interlayer resin insulating layer on a substrate formed with a conductor circuit, creating openings for formation of via holes in said interlayer resin insulating layer, forming an electroless plated metal layer on said interlayer resin insulating layer, disposing a resist thereon, performing electroplating, stripping the resist off and etching the electroless plated metal layer to provide a conductor circuit and via holes, wherein the electroplating is performed intermittently using said electroless plated metal layer as cathode and a plating metal as anode at a constant voltage between said anode and said cathode.
Abstract:
Embodiments of substrate in accordance with the present invention provide interconnect cavities for direct interconnection between SMT components and internal conductive inner layers, as well as surface outer layers. Interconnect cavities eliminate the need for through hole vias and require less substrate surface area and internal volume. Each interconnect cavity comprises a cavity extending from the substrate surface to an adjacent internal conductive inner layer directly beneath the cavity. The cavity extends through a conductive outer layer on the substrate surface. The cavity has a conductive liner interconnected with the outer layer and the inner layer forming a cup-shaped conductive depression interconnecting the outer layer with the inner layer.
Abstract:
A distributive capacitor 205 and impedance matching network 201 and transmitter 101 that use the capacitor and are suitable for high density integration applications include a printed circuit substrate 303 comprising one of a printed circuit board and a silicon based substrate, a first conductive layer 305 disposed on the printed circuit substrate, a layer of dielectric material 307 disposed on the first conductive layer and having a thickness, the dielectric material having a dielectric constant more than five times greater than the dielectric constant of the printed circuit substrate; and a second conductive layer 309 disposed on the layer of dielectric material and having a second length 311 and a second width 603 that are selected so that the distributive capacitor operates as a transmission line.