Abstract:
Sealable liquid-tight containers and methods for economically manufacturing containers for storing and dispensing substances and any other purposes for which conventional sealable liquid-tight containers are utilized. The containers are readily and economically formed from inorganically filled mixtures comprising a water-dispersible organic polymer binder, aggregate fillers, fibers, and water. Alternatively, such containers are formed from high starch-containing compositions which optionally include inorganic fillers up to about 90%. Such compositions can be directly molded, formed into wet sheets and then molded, formed into dry sheets and then reformed, or extruded into the container components. The containers or components thereof may optionally be coated, lined, laminated, and/or receive printing.
Abstract:
Compositions and methods for manufacturing sheets having a starch-bound matrix reinforced with fibers and optionally including an inorganic mineral filler. Suitable mixtures for forming the sheets are prepared by mixing together water, unmodified and ungelatinized starch granules, a cellulosic ether, fibers, and optionally an inorganic mineral filler in the correct proportions to form a sheet having desired properties. The mixtures are formed into sheets by passing them between one or more sets of heated rollers to form green sheets. The heated rollers cause the cellulosic ether to form a skin on the outer surfaces of the sheet that prevents the starch granules from causing the sheet to adhere to the rollers upon gelation of the starch. The green sheets are passed between heated rollers to gelatinize the starch granules, and then to dry the sheet by removing a substantial portion of the water by evaporation. The starch and cellulosic ether form the binding matrix of the sheets with the fibers and optional inorganic filler dispersed throughout the binding matrix. The starch-bound sheets can be cut, rolled, pressed, scored, perforated, folded, and glued to fashion articles from the sheets much like paper or paperboard. The sheets are particularly useful in the mass production of containers, such as food and beverage containers.
Abstract:
Compositions, methods, and apparatus for manufacturing sheets having a highly inorganically filled matrix. Suitable inorganically filled mixtures are prepared by mixing together an organic polymer binder, water, one or more aggregate materials, fibers, and optional admixtures in the correct proportions in order to form a sheet which has the desired performance criteria. The inorganically filled mixtures are formed into sheets by first extruding the mixtures and then passing the extruded materials between a set of rollers. The rolled sheets are dried in an accelerated manner to form a substantially hardened sheet, such as by heated rollers and/or a drying chamber. The inorganically filled sheets may have properties substantially similar to sheets presently made from traditional materials like paper, paperboard, polystyrene, plastic, or metal. Such sheets can be cut, rolled, pressed, scored, perforated, folded, and glued to fashion articles from the sheet. They have especial utility in the mass production of containers, particularly food and beverage containers.
Abstract:
A method and apparatus for applying coating liquid to a web of paper traveling over a web supporting surface at speeds of 3,000 or more feet per minute to produce a coated web free of streaking and other imperfections includes the steps and structural elements for distributing coating liquid onto the supported web through a limited application zone within a short dwell time of the liquid on the web, the web moving through the application zone at a speed that is sufficiently high to create turbulence in the coating liquid being applied to the web, doctoring the coating liquid on the web by biasing a primary doctor against the coated web at the rear edge of the application zone so as to form a layer of coating liquid on the web as the web leaves the application zone, the turbulence in the coating liquid causing machine direction streaks in the layer of the coating liquid as the web leaves the application zone; and, at a location downstream and isolated from the application zone, performing a successive doctoring of excess coating liquid on the supported web by biasing a final doctor blade against the coated web to remove excess coating from the web and to level and smooth the coating retained on the web to a final wet film thickness and smoothness.
Abstract:
Compositions, methods, and systems for manufacturing articles, particularly containers and packaging materials, having a highly inorganically filled matrix. Suitable inorganically filled mixtures are prepared by mixing together an organic polymer binder, water, one or more aggregate materials, fibers, and optional admixtures in the correct proportions in order to form an article which has the desired performance criteria. The inorganically filled mixtures are molded to fashion a portion of the mixture into a form stable shape for the desired article. Once the article has obtained form stability, the article is removed from the mold and allowed to harden to gain strength. The articles may have properties substantially similar to articles presently made from traditional materials like paper, paperboard, polystyrene, plastic, or metal. They have especial, utility in the mass production of containers, particularly food and beverage containers.
Abstract:
Compositions and methods for manufacturing sheets having a highly inorganically filled matrix. Suitable inorganically filled mixtures are prepared by mixing together an organic polymer binder, water, one or more inorganic aggregate materials, fibers, and optional admixtures in the correct proportions in order to form a sheet which has the desired performance criteria. The inorganically filled mixtures are formed into sheets by first extruding the mixtures and the passing the extruded materials between a set of rollers. The rolled sheets are dried in an accelerated manner to form a substantially hardened sheet, such as by heated rollers and/or a drying chamber. The inorganically filled sheets may have properties substantially similar to sheets presently made from traditional materials like paper, paperboard, polystyrene, plastic, or metal. Such sheets can be rolled, pressed, scored, perforated, folded, and glued. They have especial utility in the mass production of containers, particularly food and beverage containers.
Abstract:
Compositions, methods, and systems for manufacturing articles, particularly containers and packaging materials, having a particle packed, highly inorganically filled, cellular matrix are disclosed. Suitable inorganically filled mixtures are prepared by mixing together a starch-based binder, a solvent, inorganic aggregates, and optimal admixtures, e.g., fibers, mold-releasing agents, rheology-modifying agents, plasticizers, coating materials, and dispersants, in the correct proportions to form an article which has the desired performance criteria. The inorganically filled mixtures have a predetermined viscosity and are heated between molds at an elevated temperature and pressure to produce form-stable articles having a desired shape and a selectively controlled cellular, structure matrix. The molded articles may be placed in a high humidity chamber to obtain the necessary flexibility for their intended use. The articles may be manufactured to have properties substantially similar to articles presently made from conventional materials like paper, paperboard, polystyrene, plastic, or other organic materials. They have especial utility in the mass-production of containers, particularly food and beverage containers.
Abstract:
Hydraulically settable mixtures and methods for extruding such mixtures into a variety of objects which are form-stable in the green state are disclosed. High green strength is achieved by increasing the yield stress of the mixture while maintaining adequate extrudability. Optimizing the particle packing density while including a deficiency of water yields a hydraulically settable mixture which will flow under pressures typically associated with the extrusion of clay or plastic. In addition, a rheology-modifying agent can be added to increase the yield stress of the mixture while not significantly increasing the viscosity. The desired strength properties and other performance criteria of the final hardened extruded product are controlled by adding aggregates, fibers, a hydraulically settable binder, water, and other admixtures.
Abstract:
Compositions and methods for manufacturing sheets having a hydraulically settable matrix. Suitable compositions are prepared by mixing together a hydraulic binder, water, and appropriate additives (such as aggregates, fibers, and rheology-modifying agents) which impart predetermined properties so that a sheet formed therefrom has the desired performance criteria. The compositions are formed into sheets by first extruding them into a sheet and then calendering the sheet using a set of rollers. The calendered sheets are dried in an accelerated manner to form a substantially hardened sheet. The drying is performed by heated rollers and/or a drying chamber. The hydraulically settable sheets so formed may have properties substantially similar to sheets made from presently used materials like paper, cardboard, polystyrene, or plastic. Such sheets can be rolled, pressed, scored, perforated, folded, and glued. They have especial utility in the mass production of containers, particularly food and beverage containers.
Abstract:
Compositions and methods for substantially uniformly dispersing fibers throughout a starch-based composition. The fibers are dispersed throughout the composition by means of a high yield stress, high viscosity fluid fraction formed by interacting together water and a thickening agent such as gelatinized starch. The well-dispersed fibers provide for a large variety of processing conditions in the manufacture of articles from such starch-based compositions (e.g., greater variations in the use of water, the amount of water that must be removed to yield a form stable article, and wall thickness). Articles formed thereby have greatly improved mechanical properties as a result of the reinforcing effect of the uniformly dispersed fibers. The fibers preferably have an average length of at least about 2 mm and an aspect ratio of at least about 25:1. Other admixtures may be added to the starch-based compositions upon dispersing the fibers, such as ungelatinized starch, rheology-modifying agents, mold-release agents, inorganic fillers, hydraulically settable binders, plasticizers, integral coating or sealing materials, and dispersants.