摘要:
A microelectronic assembly is disclosed that is capable of achieving a desired impedance for raised conductive elements. The microelectronic assembly may include an interconnection element, a surface conductive element, a microelectronic device, a plurality of raised conductive elements, and a bond element. The microelectronic device may overlie the dielectric element and at least one surface conductive element attached to the front surface. The plurality of raised conductive elements may connect the device contacts with the element contacts. The raised conductive elements may have substantial portions spaced a first height above and extending at least generally parallel to at least one surface conductive element, such that a desired impedance may be achieved for the raised conductive elements. A bond element may electrically connect at least one surface conductive element with at least one reference contact that may be connectable to a source of reference potential.
摘要:
A microelectronic package can include wire bonds having bases bonded to respective ones of conductive elements exposed at a surface of a substrate. The wire bonds may have exterior edge surfaces disposed at an angle between 25° and 90° relative to the bases, and ends remote, e.g., opposite, from the bases, and remote from the ends which are connected to the bases. A dielectric encapsulation layer extends from the substrate and covers portions of the wire bonds such that covered portions of the wire bonds are separated from one another by the encapsulation layer, wherein unencapsulated portions of the wire bonds are defined by portions of the wire bonds that are uncovered by the encapsulation layer, the unencapsulated portions including the ends of the wire bonds.
摘要:
A microelectronic assembly includes an interconnection element, a conductive plane, a microelectronic device, a plurality of traces, and first and second bond elements. The interconnection element includes a dielectric element, a plurality of element contacts, and at least one reference contact thereon. The microelectronic device includes a front surface with device contacts exposed thereat. The conductive plane overlies a portion of the front surface of the microelectronic device. Traces overlying a surface of the conductive plane are insulated therefrom and electrically connected with the element contacts. The traces also have substantial portions spaced a first height above and extending at least generally parallel to the conductive plane, such that a desired impedance is achieved for the traces. First bond element electrically connects the at least one conductive plane with the at least one reference contact. Second bond elements electrically connect device contacts with the traces.
摘要:
A microelectronic assembly may include a microelectronic element having a plurality of element contacts at a face thereof, and a compliant dielectric element having a Young's modulus of less than about two gigapascal (GPa) and substrate contacts at a first surface joined to the element contacts. The substrate contacts may be electrically connected with terminals at a second surface of the compliant dielectric element that opposes the first surface, through conductive vias in the compliant dielectric element. A rigid underfill may be between the face of the microelectronic element and the first surface of the compliant dielectric element. The terminals may be usable for bonding the microelectronic assembly to corresponding contacts of a component external to the microelectronic assembly.
摘要:
A microelectronic assembly includes a semiconductor chip having chip contacts exposed at a first face and a substrate juxtaposed with a face of the chip. A conductive bond element can electrically connect a first chip contact with a first substrate contact of the substrate, and a second conductive bond element can electrically connect the first chip contact with a second substrate contact. The first bond element can have a first end metallurgically joined to the first chip contact and a second end metallurgically joined to the first substrate contact. A first end of the second bond element can be metallurgically joined to the first bond element. The second bond element may or may not touch the first chip contact or the substrate contact. A third bond element can be joined to ends of first and second bond elements which are joined to substrate contacts or to chip contacts. In one embodiment, a bond element can have a looped connection, having first and second ends joined at a first contact and a middle portion joined to a second contact.
摘要:
A semiconductor assembly includes plural chips stacked one above the other. One or more of the chips is a magnetic random access memory (MRAM). Use of MRAM alleviates problems caused by heat dissipation in the stack.
摘要:
A microelectronic package including a dielectric layer having top and bottom surfaces, the dielectric layer having terminals exposed at the bottom surface; a metallic wall bonded to the dielectric layer and projecting upwardly from the top surface of the dielectric layer and surrounding a region of the top surface; a metallic lid bonded to the wall and extending over the region of the top surface so that the lid, the wall and the dielectric layer cooperatively define an enclosed space; and a microelectronic element disposed within the space and electrically connected to the terminals.
摘要:
A stacked microelectronic assembly includes a plurality of microelectronic subassemblies. Each subassembly includes a substrate having at least one site, a plurality of first contacts and a plurality of second contacts. Each subassembly also has at least one microelectronic element assembled to the at least one attachment site and electrically connected to at least some of the first and second contacts. The substrate is folded so that the first contacts are accessible at a bottom of a subassembly and the second contacts are accessible at a top of a subassembly. The plurality of subassemblies are stacked one on top of another in a generally vertical configuration. The substrate of at least one of the subassemblies has a plurality of attachment sites and a plurality of microelectronic elements assembled to the attachment sites. The substrate is folded so that at least some of the plurality of microelectronic elements are disposed alongside one another.
摘要:
A microelectronic package includes a microelectronic element having faces and contacts, a flexible substrate overlying and spaced from a first face of the microelectronic element, and a plurality of conductive terminals exposed at a surface of the flexible substrate. The conductive terminals are electrically interconnected with the microelectronic element and the flexible substrate includes a gap extending at least partially around at least one of the conductive terminals. In certain embodiments, the package includes a support layer, such as a compliant layer, disposed between the first face of the microelectronic element and the flexible substrate. In other embodiments, the support layer includes at least one opening that is at least partially aligned with one of the conductive terminals.
摘要:
A microelectronic assembly includes an interconnection element, a conductive plane, a microelectronic device, a plurality of traces, and first and second bond elements. The interconnection element includes a dielectric element, a plurality of element contacts, and at least one reference contact thereon. The microelectronic device includes a front surface with device contacts exposed thereat. The conductive plane overlies a portion of the front surface of the microelectronic device. Traces overlying a surface of the conductive plane are insulated therefrom and electrically connected with the element contacts. The traces also have substantial portions spaced a first height above and extending at least generally parallel to the conductive plane, such that a desired impedance is achieved for the traces. First bond element electrically connects the at least one conductive plane with the at least one reference contact. Second bond elements electrically connect device contacts with the traces.