摘要:
An interconnection element and a method of forming an interconnection element. In one embodiment, the interconnection element includes a first structure and a second structure coupled to the first structure. The second structure coupled with the first material has a spring constant greater than the spring constant of the first structure alone. In one embodiment, the interconnection element is adapted to be coupled to an electronic component tracked as a conductive path from the electronic component. In one embodiment, the method includes forming a first (interconnection) structure coupled to a substrate to define a shape suitable as an interconnection in an integrated circuit environment and then coupling, such as by coating, a second (interconnection) structure to the first (interconnection) structure to form an interconnection element. Collectively, the first (interconnection) structure and the second (interconnection) structure have a spring constant greater than a spring constant of the first (interconnection) structure.
摘要:
A method of making a microelectronic spring contact array comprises forming a plurality of spring contacts on a sacrificial substrate and then releasing the spring contacts from the sacrificial substrate. Each of the spring contacts has an elongated beam having a base end. The method of making the array includes attaching the spring contacts at their base ends to a base substrate after they have been released entirely from the sacrificial substrate, so that each contact extends from the base substrate to a distal end of its beams. The distal ends are aligned with a predetermined array of tip positions. In an embodiment of the invention, the spring contacts are formed by patterning contours of the spring contacts in a sacrificial layer on the sacrificial substrate. The walls of patterned recesses in the sacrificial layer define side profiles of the spring contacts, and a conductive material is deposited in the recesses to form the elongated beams of the spring contacts.
摘要:
An interconnection contact structure assembly including an electronic component having a surface and a conductive contact carried by the electronic component and accessible at the surface. The contact structure includes an internal flexible elongate member having first and second ends and with the first end forming a first intimate bond to the surface of said conductive contact terminal without the use of a separate bonding material. An electrically conductive shell is provided and is formed of at least one layer of a conductive material enveloping the elongate member and forming a second intimate bond with at least a portion of the conductive contact terminal immediately adjacent the first intimate bond. The component carries the contact structures on both sides, the spacing of the structures on the first side being different than that of the second side.
摘要:
Spring contact elements are fabricated at areas on an electronic component remote from terminals to which they are electrically connected. For example, the spring contact elements may be mounted to remote regions such as distal ends of extended tails (conductive lines) which extend from a terminal of an electronic component to positions which are remote from the terminals. In this manner, a plurality of substantially identical spring contact elements can be mounted to the component so that their free (distal) ends are disposed in a pattern and at positions which are spatially-translated from the pattern of the terminals on the component. The spring contact elements include, but are not limited to, composite interconnection elements and plated-up structures. The electronic component includes, but is not limited to, a semiconductor device, a memory chip, a portion of a semiconductor wafer, a space transformer, a probe card, a chip carrier, and a socket.
摘要:
The efficacy of electrical discharges for severing bond wires and/or for forming balls at the ends of bond wires (including bond wires already severed by alternative mechanisms) is improved by performing the electrical discharges in the presence of ultraviolet light. A "spark gap" is formed between an EFO electrode and the wire, one of which serves as the cathode of the spark gap. Preferably, the ultraviolet light is directed at the element serving as the cathode of the spark gap. Providing photoemission at the cathode element of the spark gap stabilizes arc/plasma formation and produces more reliable and predictable results. This technique may be used in conjunction with negative EFO systems or with positive EFO systems, and may benefit from either direct or field-assisted photoemission.
摘要:
Circuit configurations are described for use with split lead leadframes and relatively isolated quiet and noisy power rails to reduce power rail noise and circuit noise. An octal register transceiver circuit incorporates a latch (300) coupled to relatively quiet power rails (42,44) and an output buffer circuit (400) having an input circuit coupled to the latch (300) and relatively quiet power rails (42,44). The output driver transistors (Q433,Q434) of the output buffer circuit (400) are coupled to the relatively noisy output power rails (52,54) to isolate the latch circuit from power rail noise and minimize erroneous operation of the latch. A DC Miller Killer circuit (450) is constructed with delay control components (D456,D457,R460) and an alternative discharge path (R458,D459) to reduce aggravation of power rail noise during operation of DCMK.
摘要翻译:电路配置被描述用于分离引线引线框架和相对隔离的安静和噪声电源轨,以减少电力轨道噪声和电路噪声。 八进制寄存器收发器电路包括耦合到相对安静的电源轨(42,44)的锁存器(300)和具有耦合到锁存器(300)和相对安静的电源轨(42,44)的输入电路的输出缓冲器电路(400) )。 输出缓冲电路(400)的输出驱动晶体管(Q433,Q434)耦合到相对较嘈杂的输出电源轨(52,54),以将锁存电路与电源轨噪声隔离开来并最大限度地减小锁存器的错误操作。 DC Miller Killer电路(450)由延迟控制组件(D456,D457,R460)和替代放电路径(R458,D459)构成,以减少DCMK运行期间电源轨噪声的恶化。
摘要:
One or more customization layers can be added to a wiring substrate. The customization layers can provide customized electrical connections from electrical contacts of the base wiring substrate to electrical contacts at an outer surface of the customization layers, which can allow the contacts at the outer surface of the customization layers can be in a different pattern than the contacts at the surface of the base wiring substrate. The customization layers can comprise electrically insulating material, electrically conductive via structures through the insulating material, electrically conductive traces, electrically conductive jumpers electrically connecting two traces without contacting a trace disposed between the two traces, and/or other such elements. A jumper can be formed by making a relatively small deposit of electrically insulating material between the two traces to be connected and then making a relatively small deposit of electrically conductive material on parts of the two traces and the insulating material. Via structures can be coupled to traces and an insulating material can be cast around the via structures. Alternatively, via structures can be formed in openings with sloped side walls in an insulating layer.
摘要:
A method or an apparatus for aligning a plurality of structures can include applying a first force in a first plane to a first structure. The method can also include constraining in the first plane the first structure with respect to a second structure such that the first structure is in a position with respect to the second structure that aligns first features on the first structure with second features on the second structures. The second feature can be in a second plane that is generally parallel to the first plane. The first and second structures can be first and second electronic components, which can be components of a probe card assembly.
摘要:
A probe card assembly, according to some embodiments of the invention, can comprise a tester interface configured to make electrical connections with a test controller, a plurality of electrically conductive probes disposed to contact terminals of an electronic device to be tested, and a plurality of electrically conductive data paths connecting the tester interface and the probes. At least one of the data paths can comprise an air bridge structure trace comprising an electrically conductive trace spaced away from an electrically conductive plate by a plurality of pylons.
摘要:
An interconnection apparatus and a method of forming an interconnection apparatus. Contact structures are attached to or formed on a first substrate. The first substrate is attached to a second substrate, which is larger than the first substrate. Multiple such first substrates may be attached to the second substrate in order to create an array of contact structures. Each contact structure may be elongate and resilient and may comprise a core that is over coated with a material that imparts desired structural properties to the contact structure.