Abstract:
A semiconductor device comprises a first conductive layer. A second conductive layer is formed over the first conductive layer. A semiconductor component is disposed over the first conductive layer. The second conductive layer lies in a plane between a top surface of the semiconductor component and a bottom surface of the semiconductor component. A third conductive layer is formed over the semiconductor component opposite the first conductive layer. The semiconductor device includes a symmetrical structure. A first insulating layer is formed between the first conductive layer and semiconductor component. A second insulating layer is formed between the semiconductor component and third conductive layer. A height of the first insulating layer between the first conductive layer and semiconductor component is between 90% and 110% of a height of the second insulating layer between the semiconductor component and third conductive layer. The semiconductor component includes a passive device.
Abstract:
A PoP semiconductor device has a top semiconductor package disposed over a bottom semiconductor package. The top semiconductor package has a substrate and a first semiconductor die disposed over the substrate. First and second encapsulants are deposited over the first semiconductor die and substrate. A first build-up interconnect structure is formed over the substrate after depositing the second encapsulant. The top package is disposed over the bottom package. The bottom package has a second semiconductor die and modular interconnect units disposed around the second semiconductor die. A second build-up interconnect structure is formed over the second semiconductor die and modular interconnect unit. The modular interconnect units include a plurality of conductive vias and a plurality of contact pads electrically connected to the conductive vias. The I/O pattern of the build-up interconnect structure on the top semiconductor package is designed to coincide with the I/O pattern of the modular interconnect units.
Abstract:
A semiconductor device has a base substrate with recesses formed in a first surface of the base substrate. A first conductive layer is formed over the first surface and into the recesses. A second conductive layer is formed over a second surface of the base substrate. A first semiconductor die is mounted to the base substrate with bumps partially disposed within the recesses over the first conductive layer. A second semiconductor die is mounted to the first semiconductor die. Bond wires are formed between the second semiconductor die and the first conductive layer over the first surface of the base substrate. An encapsulant is deposited over the first and second semiconductor die and base substrate. A portion of the base substrate is removed from the second surface between the second conductive layer down to the recesses to form electrically isolated base leads for the bumps and bond wires.
Abstract:
A semiconductor device has a first interconnect structure. A first semiconductor die has an active surface oriented towards and mounted to a first surface of the first interconnect structure. A first encapsulant is deposited over the first interconnect structure and first semiconductor die. A second semiconductor die has an active surface oriented towards and mounted to a second surface of the first interconnect structure opposite the first surface. A plurality of first conductive pillars is formed over the second surface of the first interconnect structure and around the second semiconductor die. A second encapsulant is deposited over the second semiconductor die and around the plurality of first conductive pillars. A second interconnect structure including a conductive layer and bumps are formed over the second encapsulant and electrically connect to the plurality of first conductive pillars and the first and second semiconductor die.
Abstract:
A semiconductor device has a first thermally conductive layer formed over a first surface of a semiconductor die. A second surface of the semiconductor die is mounted to a sacrificial carrier. An encapsulant is deposited over the first thermally conductive layer and sacrificial carrier. The encapsulant is planarized to expose the first thermally conductive layer. A first insulating layer is formed over the second surface of the semiconductor die and a first surface of the encapsulant. A portion of the first insulating layer over the second surface of the semiconductor die is removed. A second thermally conductive layer is formed over the second surface of the semiconductor die within the removed portion of the first insulating layer. An electrically conductive layer is formed within the insulating layer around the second thermally conductive layer. A heat sink can be mounted over the first thermally conductive layer.
Abstract:
A semiconductor device has a conductive via in a first surface of a substrate. A first interconnect structure is formed over the first surface of the substrate. A first bump is formed over the first interconnect structure. The first bump is formed over or offset from the conductive via. An encapsulant is deposited over the first bump and first interconnect structure. A portion of the encapsulant is removed to expose the first bump. A portion of a second surface of the substrate is removed to expose the conductive via. The encapsulant provides structural support and eliminates the need for a separate carrier wafer when thinning the substrate. A second interconnect structure is formed over the second surface of the substrate. A second bump is formed over the first bump. A plurality of semiconductor devices can be stacked and electrically connected through the conductive via.
Abstract:
A semiconductor device is manufactured by, first, providing a wafer, designated with a saw street guide, and having a bond pad formed on an active surface of the wafer. The wafer is taped with a dicing tape. The wafer is singulated along the saw street guide into a plurality of dies having a plurality of gaps between each of the plurality of dies. The dicing tape is stretched to expand the plurality of gaps to a predetermined distance. An organic material is deposited into each of the plurality of gaps. A top surface of the organic material is substantially coplanar with a top surface of a first die of the plurality of dies. A redistribution layer is patterned over a portion of the organic material. An under bump metallization (UBM) is deposited over the organic material in electrical communication, through the redistribution layer, with the bond pad.
Abstract:
A microelectromechanical system (MEMS) semiconductor device has a first and second semiconductor die. A first semiconductor die is embedded within an encapsulant together with a modular interconnect unit. Alternatively, the first semiconductor die is embedded within a substrate. A second semiconductor die, such as a MEMS die, is disposed over the first semiconductor die and electrically connected to the first semiconductor die through an interconnect structure. In another embodiment, the first semiconductor die is flip chip mounted to the substrate, and the second semiconductor die is wire bonded to the substrate adjacent to the first semiconductor die. In another embodiment, first and second semiconductor die are embedded in an encapsulant and are electrically connected through a build-up interconnect structure. A lid is disposed over the semiconductor die. In a MEMS microphone embodiment, the lid, substrate, or interconnect structure includes an opening over a surface of the MEMS die.
Abstract:
A semiconductor device is made by providing a semiconductor die having an optically active area, providing a leadframe or pre-molded laminated substrate having a plurality of contact pads and a light transmitting material disposed between the contact pads, attaching the semiconductor die to the leadframe so that the optically active area is aligned with the light transmitting material to provide a light transmission path to the optically active area, and disposing an underfill material between the semiconductor die and leadframe. The light transmitting material includes an elevated area to prevent the underfill material from blocking the light transmission path. The elevated area includes a dam surrounding the light transmission path, an adhesive ring, or the light transmission path itself can be the elevated area. An adhesive ring can be disposed on the dam. A filler material can be disposed between the light transmitting material and contact pads.
Abstract:
A semiconductor device includes a semiconductor die. An encapsulant is formed around the semiconductor die. A build-up interconnect structure is formed over a first surface of the semiconductor die and encapsulant. A first supporting layer is formed over a second surface of the semiconductor die as a supporting substrate or silicon wafer disposed opposite the build-up interconnect structure. A second supporting layer is formed over the first supporting layer an includes a fiber enhanced polymer composite material comprising a footprint including an area greater than or equal to an area of a footprint of the semiconductor die. The semiconductor die comprises a thickness less than 450 micrometers (μm). The thickness of the semiconductor die is at least 1 μm less than a difference between a total thickness of the semiconductor device and a thickness of the build-up interconnect structure and the second supporting layer.