Abstract:
Provided are a method for forming conductive pattern by direct radiation of an electromagnetic wave capable of forming fine conductive patterns on various kinds of polymer resin products or resin layers under a relatively low power by a simplified process, even without containing specific inorganic additives in the polymer resin itself, and a resin structure having the conductive pattern formed thereon.The method for forming the conductive pattern by direct radiation of the electromagnetic wave includes: forming a first region having a predetermined surface roughness by selectively radiating the electromagnetic wave on a polymer resin substrate containing carbon-based black pigment; forming a conductive seed on the polymer resin substrate; forming a metal layer by plating the polymer resin substrate having the conductive seed formed thereon; and removing the conductive seed and the metal layer from a second region of the polymer resin substrate, wherein the second region has surface roughness smaller than that of the first region.
Abstract:
A device embedded substrate includes an insulating layer including an insulating resin material, a device embedded in the insulating layer, a metal film coating at least one face of the device, and a roughened portion formed by roughening at least part of the surface of the metal film. Preferably, the device embedded substrate further includes: a conductive layer pattern-formed on a bottom face, the bottom face being one face of the insulating layer; and a bonding agent made of a material different from the insulating layer and joining the conductive layer (6) and a mounting face, the mounting face being one face of the device. The metal film is formed only on a face opposite to the mounting face, and the bonding agent has a thickness smaller than a thickness from the metal film to a top face, the top face being the other face of the insulating layer.
Abstract:
Provided are a tape carrier package and a method of manufacturing the same, the method, including: forming through holes by performing a drill process using a laser to an insulating film of a flexible copper clad laminate (FCCL) film consisting of the insulating film and a copper layer; forming a circuit pattern layer by performing an etching process to the copper layer of the FCCL film; and selectively forming a plating layer on the circuit pattern layer. The method of manufacturing the tape carrier package according to the present invention is advantageous because a punching process, and processes for laminating and drying the copper layer which are necessary for the conventional method of manufacturing the tape carrier package can be omitted, a production cost of the tape carrier package is reduced, and the time required for the drying process is saved.
Abstract:
A method of manufacturing a device is provided. The method includes forming a first cavity in a first substrate with the first cavity having a first depth. A second cavity is formed in a second substrate with the second cavity having a second depth. The first cavity and the second cavity are aligned with each other. The first substrate is affixed to the second substrate to form a waveguide substrate having a hollow waveguide with a first dimension substantially equal to the first depth plus the second depth. A conductive layer is formed on the sidewalls of the hollow waveguide. The waveguide substrate is placed over a packaged semiconductor device, the hollow waveguide aligned with a launcher of the packaged semiconductor device.
Abstract:
Examples of the present disclosure are related to systems and methods for lighting fixtures. More particularly, embodiments disclose directly embedded a smart module with a lighting fixture utilizing metal core PCB (MCPCB).
Abstract:
An electronic module is disclosed, wherein the electronic module comprises: a first circuit board, comprising a top surface, a bottom surface, and a lateral surface connecting the top surface and the bottom surface of the first circuit board; wherein an electrode structure is disposed on the first circuit board, wherein a second circuit board is disposed under the bottom surface of the first circuit board, wherein a soldering material is disposed between the bottom surface of the electrode structure and the second circuit board and extended onto a wettable flank of the electrode structure to form a soldering structure, wherein said soldering structure comprises an outer surface that is located above the bottom surface of the first circuit board and outside the outmost portion of the lateral surface of the first circuit board.
Abstract:
The present invention provides a flexible printed circuit capable of being mounted to an outer edge portion of a display panel including a periphery that is at least partially curved. The flexible printed circuit of the present invention includes: a flexible substrate provided with multiple slits; multiple conductive lines; and multiple terminals electrically coupled with the respective conductive lines in an independent manner. The slits and the conductive lines are disposed in the longitudinal direction of the flexible substrate. The terminals are disposed on a first longitudinal end of the flexible substrate.
Abstract:
It is provided an insulating substrate including through holes 2 for conductors arranged in the insulating substrate. A thickness of the insulating substrate is 25 to 300 μm , and a diameter of the through hole is 20 to 100 μm . The insulating substrate is composed of an alumina sintered body. A relative density and an average grain size of the alumina sintered body is 99.5 percent or higher and 2 to 50 μm , respectively.
Abstract:
A wiring board includes core substrate, a first build-up layer on first surface of the substrate and including conductive and insulating resin layers, and a second build-up layer on second surface of the substrate and including conductive and insulating resin layers. The first build-up is formed such that each conductive layer includes a metal foil layer and a plating layer on the foil layer and the foil layer of a conductive layer on an outermost resin layer has thickness greater than thickness of the foil layer of each conductive layer on a non-outermost resin layer, and the second build-up is foimed such that each conductive layer includes a metal foil layer and a plating layer on the foil layer and the foil layer of a conductive layer on an outermost resin layer has thickness greater than thickness of the foil layer of each conductive layer on a non-outermost resin layer.
Abstract:
A wiring substrate 11A includes a high heat radiation substrate 21 which has a high thermal conductive layer in which at least one of a front surface and a rear surface thereof is a mounting surface 21a for a variety of components; a connection terminal 31 which is extended from the high heat radiation substrate 21 and bent in a direction perpendicular to a surface of the high heat radiation substrate 21; and a heat radiation piece section 35 which is integrally installed to the connection terminal 31.