摘要:
Disclosed are a method for metallization during semiconductor wafer processing and the resulting structures. In this method, a passivation layer is patterned with first openings aligned above and extending vertically to metal structures below. A mask layer is formed and patterned with second openings aligned above the first openings, thereby forming two-tier openings extending vertically through the mask layer and passivation layer to the metal structures below. An electrodeposition process forms, in the two-tier openings, both under-bump pad(s) and additional metal feature(s), which are different from the under-bump pad(s) (e.g., a wirebond pad; a final vertical section of a crackstop structure; and/or a probe pad). Each under-bump pad and additional metal feature initially comprises copper with metal cap layers thereon. The mask layer is removed, an additional mask layer is formed and patterned with third opening(s) exposing only the under-bump pad(s) and solder material is deposited on the under-bump pad(s).
摘要:
A method for manufacturing semiconductor devices is disclosed. In one embodiment a semiconductor substrate having a first surface, a second surface opposite to the first surface and a plurality of semiconductor components is provided. The semiconductor substrate has a device thickness. At least one metallisation layer is formed on the second surface of the semiconductor substrate. The metallisation layer has a thickness which is greater than the device thickness.
摘要:
A semiconductor wafer has a contact pad. A first insulating layer is formed over the wafer. A second insulating layer is formed over the first insulating layer and contact pad. A portion of the second insulating layer is removed to expose the contact pad. A first UBM layer is formed over and follows a contour of the second insulating layer and contact pad to create a well over the contact pad. A first buffer layer is formed in the well over the first UBM layer and the contact pad. A second UBM layer is formed over the first UBM layer and first buffer layer. A third UBM layer is formed over the second UBM layer. A bump is formed over the third UBM layer. The first buffer layer reduces stress on the bump and contact pad. A second buffer layer can be formed between the second and third UBM layers.
摘要:
According to one embodiment of the present invention, a method of plating a TSV hole in a substrate is provided. The TSV hole may include an open end terminating at a conductive pad, a stack of wiring levels, and a plurality of chip interconnects. The method of plating a TSV may include attaching a handler to the plurality of chip interconnects, the handler having a conductive layer in electrical contact with the plurality of chip interconnects; exposing a closed end of the TSV hole, including the conductive pad, to an electrolyte solution; and applying an electrical potential along an electrical path from the conductive layer to the conductive pad causing conductive material from the electrolyte solution to deposit on the conductive pad and within the TSV hole, the electrical path including the conductive layer, the plurality of chip interconnects, the stack of wiring levels and the conductive pad.
摘要:
A method and system of stacking and aligning a plurality of integrated circuits. The method includes the steps of providing a first integrated circuit having at least one funnel-shaped socket, providing a second integrated circuit, aligning at least one protrusion on the second integrated circuit with the at least one funnel-shaped socket, and bonding the first integrated circuit to the second integrated circuit. The system includes a first integrated circuit having at least one funnel-shaped socket, a metallization-diffusion barrier disposed on the interior of the funnel-shaped socket, and a second integrated circuit. The at least one funnel-shaped socket is adapted to receive a portion of the second integrated circuit.
摘要:
Various semiconductor chip solder bump and underbump metallization (UBM) structures and methods of making the same are disclosed. In one aspect, a method is provided that includes depositing a layer of a first metallic material on a semiconductor chip. The first layer has a first physical quantity. A layer of a second metallic material is deposited on the layer of the first metallic material. The second layer has a second physical quantity. The first and second layers are reflowed to form a solder structure with a desired ratio of the first metallic material to the second metallic material.
摘要:
Various semiconductor chip solder bump and underbump metallization (UBM) structures and methods of making the same are disclosed. In one aspect, a method is provided that includes providing a semiconductor chip that has a conductor pad and a passivation structure over the conductor pad. A first metallic layer is applied on the passivation structure and in electrical contact with the conductor pad. The first metallic layer covers a first portion but not a second portion of the passivation structure. A second metallic layer is applied to the first metallic layer. A polymer layer is applied to the second metallic layer. The polymer layer includes a first opening in alignment with the first metallic layer that exposes a portion of the second layer. A conducting solder barrier layer is applied to the exposed portion of the second metallic layer.
摘要:
One or more embodiments relate to a method for making a semiconductor structure, comprising: providing a workpiece; forming a barrier layer over the workpiece; forming a separation layer over the barrier layer; forming a conductive layer over the separation layer; and wet etching the conductive layer.
摘要:
An apparatus comprises an integrated circuit die including a main body having a top layer, a bottom layer, and a peripheral edge surface extending between the top layer and the bottom layer. The integrated circuit die also includes a bond pad on the main body, an edge contact at the peripheral edge surface and a line connecting the bond pad to the edge contact. The edge contact includes a bottom surface that substantially in the same plane as a surface of an encapsulant encasing the die. Additional apparatus, systems, and methods are disclosed.
摘要:
The present disclosure relates to an implantable medical device. The implantable medical device includes a component comprising a first substrate bonded to a second substrate. A method for forming the component includes removing a first portion of tin (Sn) from gold tin (AuSn) through a halogen plasma. A first portion of gold (Au) is exposed in response to removing the first portion of the Sn. The first portion of the Au through a wet etch. A second portion of the Sn is exposed in response to removing the first portion of Au.