Abstract:
A semiconductor device has a semiconductor die with a first encapsulant disposed over the semiconductor die. A first build-up interconnect structure is formed over the semiconductor die and first encapsulant. The first build-up interconnect structure has a first conductive layer. The first conductive layer includes a plurality of first conductive traces. A second encapsulant is disposed over the semiconductor die and the first build-up interconnect structure. A second build-up interconnect structure is formed over the first build-up interconnect structure and the second encapsulant. The second build-up interconnect structure has a second conductive layer. The second conductive layer includes a plurality of second conductive traces. A distance between the second conductive traces is greater than a distance between the first conductive traces. A passive device is disposed within the first encapsulant and/or the second encapsulant. A plurality of conductive vias is disposed in the first encapsulant and/or the second encapsulant.
Abstract:
A semiconductor wafer contains a plurality of semiconductor die separated by a saw street. An insulating layer is formed over the semiconductor wafer. A protective layer is formed over the insulating layer including an edge of the semiconductor die along the saw street. The protective layer covers an entire surface of the semiconductor wafer. Alternatively, an opening is formed in the protective layer over the saw street. The insulating layer has a non-planar surface and the protective layer has a planar surface. The semiconductor wafer is singulated through the protective layer and saw street to separate the semiconductor die while protecting the edge of the semiconductor die. Leading with the protective layer, the semiconductor die is mounted to a carrier. An encapsulant is deposited over the semiconductor die and carrier. The carrier and protective layer are removed. A build-up interconnect structure is formed over the semiconductor die and encapsulant.
Abstract:
Methods of forming conductive materials on contact pads for semiconductor devices and packages. Substrate is provided with contact pads formed thereon. Conductive material is formed over the contact pads by a depositing process followed by a heating process to alter the chemical properties of the conductive material. Optionally, a dispersing process may be incorporated. An interconnect structure can be mounted over the conductive material where the interconnect structure is attached to the conductive material without any active treatment to the conductive material after formation.
Abstract:
A semiconductor device has a substrate including an opening. A trench is formed over the substrate around the opening. An interconnect structure is formed in the trench. An underfill material is disposed over the interconnect structure. A first semiconductor die is disposed over the underfill material prior to curing the underfill material. An active region of the first semiconductor die is disposed over the opening in the substrate. The trench contains the outward flow of underfill material. Underfill material is blocked from flowing over unintended areas on the surface of substrate, into the opening in the substrate, and over sensors of the first semiconductor die. A second semiconductor die is disposed over the substrate. The trench is formed by a first and second dam or a first insulating layer. A second insulating layer is formed over the first insulating layer. A dam is formed over the second insulating layer.
Abstract:
A semiconductor device has a first semiconductor die. A first interconnect structure, such as a conductive pillar including a bump formed over the conductive pillar, and second interconnect structure are formed in a peripheral region of the first semiconductor die. A second semiconductor die is disposed over the first semiconductor die between the first interconnect structure and the second interconnect structure. A height of the second semiconductor die is less than a height of the first interconnect structure. A footprint of the second semiconductor die is smaller than a central region of the first semiconductor die. An encapsulant is deposited over the first semiconductor die and second semiconductor die. Alternatively, the second semiconductor die is disposed over a semiconductor package including a plurality of interconnect structures. External connectivity from the single side fo-WLCSP is performed without the use of conductive vias to provide a high throughput and device reliability.
Abstract:
A semiconductor device includes a substrate having an insulating layer and a conductive layer embedded in the insulating layer. The conductive layer is patterned to form conductive pads or conductive pillars. The substrate includes a first encapsulant formed over the conductive layer. A first opening is formed through insulating layer and first encapsulant using a stamping process or laser direct ablation. The substrate is separated into individual units, which are mounted to a carrier. A semiconductor die is disposed in the first opening in the substrate. A second encapsulant is deposited over the semiconductor die and substrate. An interconnect structure is formed over the semiconductor die and substrate. An opening is formed through the second encapsulant and through the insulating layer to expose the conductive layer. A bump is formed in the second opening over the conductive layer outside a footprint of the semiconductor die.
Abstract:
A semiconductor device has a substrate including a base and a plurality of conductive posts extending from the base. A semiconductor die is disposed on a surface of the base between the conductive posts. An interconnect structure is formed over the semiconductor die and conductive posts. An adhesive layer is disposed over the semiconductor die. A conductive layer is disposed over the adhesive layer. An encapsulant is deposited over the semiconductor die and around the conductive posts. One or more conductive posts are electrically isolated from the substrate. The conductive layer is a removable or sacrificial cap layer. The substrate includes a wafer-shape, panel, or singulated form. The semiconductor die is disposed below a height of the conductive posts. An interconnect structure is formed over the semiconductor die, encapsulant, and conductive posts.
Abstract:
A semiconductor device has a semiconductor die with a first conductive layer formed over the semiconductor die. A first insulating layer is formed over the semiconductor die with a first opening in the first insulating layer disposed over the first conductive layer. A second conductive layer is formed over the first insulating layer and into the first opening over the first conductive layer. An interconnect structure is formed over the first and second conductive layers within openings of a second insulating layer. The second insulating layer is removed. The interconnect structure can be a conductive pillar or conductive pad. A bump material can be formed over the conductive pillar. A protective coating is formed over the conductive pillar or pad to a thickness less than one micrometer to reduce oxidation. The protective coating is formed by immersing the conductive pillar or pad into the bath containing tin or indium.
Abstract:
A semiconductor device has a first semiconductor die with a shielding layer formed over its back surface. The first semiconductor die is mounted to a carrier. A first insulating layer is formed over the shielding layer. A second semiconductor die is mounted over the first semiconductor die separated by the shielding layer and first insulating layer. A second insulating layer is deposited over the first and second semiconductor die. A first interconnect structure is formed over the second semiconductor die and second insulating layer. A second interconnect structure is formed over the first semiconductor die and second insulating layer. The shielding layer is electrically connected to a low-impedance ground point through a bond wire, RDL, or TSV. The second semiconductor die may also have a shielding layer formed on its back surface. The semiconductor die are bonded through the metal-to-metal shielding layers.
Abstract:
A semiconductor device has a semiconductor die with a first conductive layer formed over the die. A first insulating layer is formed over the die with a first opening in the first insulating layer disposed over the first conductive layer. A second conductive layer is formed over the first insulating layer and into the first opening over the first conductive layer. An interconnect structure is constructed by forming a second insulating layer over the first insulating layer with a second opening having a width less than the first opening and depositing a conductive material into the second opening. The interconnect structure can be a conductive pillar or conductive pad. The interconnect structure has a width less than a width of the first opening. The second conductive layer over the first insulating layer outside the first opening is removed while leaving the second conductive layer under the interconnect structure.