Abstract:
A method of making an assembly can include forming a first conductive element at a first surface of a substrate of a first component, forming conductive nanoparticles at a surface of the conductive element by exposure to an electroless plating bath, juxtaposing the surface of the first conductive element with a corresponding surface of a second conductive element at a major surface of a substrate of a second component, and elevating a temperature at least at interfaces of the juxtaposed first and second conductive elements to a joining temperature at which the conductive nanoparticles cause metallurgical joints to form between the juxtaposed first and second conductive elements. The conductive nanoparticles can be disposed between the surfaces of the first and second conductive elements. The conductive nanoparticles can have long dimensions smaller than 100 nanometers.
Abstract:
An apparatus relating generally to a substrate is disclosed. In such an apparatus, the substrate has a first surface and a second surface opposite the first surface. The first surface and the second surface define a thickness of the substrate. A via structure extends from the first surface of the substrate to the second surface of the substrate. The via structure has a first terminal at or proximate to the first surface and a second terminal at or proximate to the second surface provided by a conductive member of the via structure extending from the first terminal to the second terminal. A barrier layer of the via structure is disposed between at least a portion of the conductive member and the substrate. The barrier layer has a conductivity configured to offset a capacitance between the conductive member and the substrate when a signal is passed through the conductive member of the via structure.
Abstract:
A microelectronic assembly including a dielectric region, a plurality of electrically conductive elements, an encapsulant, and a microelectronic element are provided. The encapsulant may have a coefficient of thermal expansion (CTE) no greater than twice a CTE associated with at least one of the dielectric region or the microelectronic element.
Abstract:
Microelectronic assemblies and methods for making the same are disclosed herein. In one embodiment, a method of forming a microelectronic assembly comprises assembling first and second components to have first major surfaces of the first and second components facing one another and spaced apart from one another by a predetermined spacing, the first component having first and second oppositely-facing major surfaces, a first thickness extending in a first direction between the first and second major surfaces, and a plurality of first metal connection elements at the first major surface, the second component having a plurality of second metal connection elements at the first major surface of the second component; and plating a plurality of metal connector regions each connecting and extending continuously between a respective first connection element and a corresponding second connection element opposite the respective first connection element in the first direction.
Abstract:
A substrate structure is presented that can include a porous polyimide material and electrodes formed in the porous polyimide material. In some examples, a method of forming a substrate can include depositing a barrier layer on a substrate; depositing a resist over the barrier layer; patterning and etching the resist; forming electrodes; removing the resist; depositing a porous polyimide aerogel; depositing a dielectric layer over the aerogel material; polishing a top side of the interposer to expose the electrodes; and removing the substrate from the bottom side of the interposer.
Abstract:
An apparatus relating generally to a substrate is disclosed. In this apparatus, a first metal layer is on the substrate. The first metal layer has an opening. The opening of the first metal layer has a bottom and one or more sides extending from the bottom. A second metal layer is on the first metal layer. The first metal layer and the second metal layer provide a bowl-shaped structure. An inner surface of the bowl-shaped structure is defined responsive to the opening of the first metal layer and the second metal layer thereon. The opening of the bowl-shaped structure is configured to receive and at least partially retain a bonding material during a reflow process.
Abstract:
An assembly includes a substrate having a substrate conductor and a contact at a first surface and a terminal at a second surface for electrically interconnecting the assembly with a component external to the assembly, at least one of the substrate conductor or the contact electrically coupled with the terminal. A first element has a first surface facing the first surface of the substrate, a first conductor at the first surface and a second conductor at a second surface. An interconnect structure may extend through the first element electrically coupling the first and second conductors. An adhesive layer may bond first surfaces of the first element and the substrate, and at least portions of the first conductor and the substrate conductor may be beyond an edge of the adhesive layer. A continuous electroless plated metal region may extend between the first conductor and the substrate conductor.
Abstract:
An opening such as a small-diameter via is formed in a semiconductor substrate such as a monocrystalline silicon chip or wafer by a high etch rate process which leaves the opening with a rough interior surface. A smoothing layer such as a polysilicon layer is applied over the interior surfaces of the openings. The smoothing layer presents a surface smoother than the original interior surface. An insulating layer is formed over the smoothing layer or formed from the smoothing layer, and a conductive element such as a metal is formed in the opening. In a variant, a glass-forming material such as BPSG is applied in the opening. The glass-forming material is reflowed to form a glassy insulating layer which presents a smooth surface. The interface between the metal conductive element and the insulating or glassy layer is smooth, which improves mechanical and electrical properties.
Abstract:
An apparatus relates generally to a three-dimensional stacked integrated circuit. In such an apparatus, the three-dimensional stacked integrated circuit has at least a first die and a second die interconnected to one another using die-to-die interconnects. A substrate of the first die has at least one thermal via structure extending from a lower surface of the substrate toward a well of the substrate without extending to the well and without extending through the substrate. A first end of the at least one thermal via structure is at least sufficiently proximate to the well of the substrate for conduction of heat away therefrom. The substrate has at least one through substrate via structure extending from the lower surface of the substrate to an upper surface of the substrate. A second end of the at least one thermal via structure is coupled to at least one through die via structure of the second die for thermal conductivity.
Abstract:
A device and method for an integrated device includes a first redistribution layer comprising one or more first conductors, one or more first dies mounted to a first surface of the first redistribution layer and electrically coupled to the first conductors, one or more first posts having first ends attached to the first dies and second ends opposite the first ends, one or more second posts having third ends attached to the first surface of the first redistribution layer and fourth ends opposite the third ends, and a second redistribution layer comprising one or more second conductors, the second redistribution layer being attached to the second ends of the first posts and to the fourth ends of the second posts. In some embodiments, the integrated device further includes a heat spreader mounted to a second surface of the first redistribution layer. The second surface is opposite the first surface.