Abstract:
A method for the removal of voids and gas bubbles within uncured or partially cured microelectronic component enapsulants and adhesive/chip attach layers. A sealed void or gas bubble within a gap between a microelectronic component and a supporting substrate is substantially eliminated through the application of a uniform pressure (isostatic or hydrostatic) and energy such that a substantially void/bubble free interposer is created.
Abstract:
A method of manufacturing a semiconductor chip package. A sacrificial layer is used as a base to selectively form an array of conductive pads such that a central region is defined by the pads. A back surface of a semiconductor chip is next attached to the sacrificial layer within the central region between the pads so that the contact bearing surface of the chip faces away from the sacrificial layer. The chip contacts are then electrically connected to respective pads, typically by wire bonding a wire therebetween. A curable, dielectric liquid encapsulant is then deposited on the sacrificial layer such that the pads, electrical connections and chip are fully encapsulated, as by an overmolding operation. The encapsulant is then cured and the sacrificial layer is either completely removed or is selectively removed to expose a surface of the pads for electrical attachment to a PWB and the back surface of the chip for creating a direct thermal path from the chip to the PWB.
Abstract:
A microelectronic component for mounting a rigid substrate, such as a hybrid circuit to a rigid support substrate, such as a printed circuit board. The microelectronic component includes a rigid interposer which may have a chip mounted on its first surface; a pattern of contacts on the rigid interposer; a flexible interposer overlying the second surface of the rigid interposer; a pattern of terminals on the flexible interposer; flexible leads; and solder coated copper balls mounted on the flexible interposer. The microelectronic component may have a socket assembly mounted on the first surface of the rigid interposer. The microelectronic component may be mounted on a rigid support substrate.
Abstract:
A semiconductor chip connection component having numerous leads extending side-by-side across a gap in a support structure, each lead having a frangible section to permit detachment of one end of the lead from the support structure in a bonding process. The frangible sections are formed by treating the lead-forming material in an elongated treatment zone extending across the regions occupied by numerous leads. The process avoids the need for especially fine etching to form notches in the lateral edges of the leads.
Abstract:
A semiconductor chip package includes a substrate having a first surface and a second surface and a gap extending from the first surface to the second surface. The substrate defines a plane which is substantially parallel to the first and second surfaces. The substrate has conductive terminals accessible and the second surface and bond pads. Conductive leads extend across the gap whereby each lead electrically interconnects one of the conductive terminals and one of the bond pads. Each lead includes an expansion section within the gap which is laterally curved with respect to the plane. A semiconductor chip having a back surface and a face surface is assembled to the substrate. The face surface includes a plurality of contacts on the periphery of the face surface of the chip whereby the chip contracts are electrically connected to the bond pads on the substrate.
Abstract:
A compliant semiconductor chip package assembly includes a semiconductor chip having a plurality of chip contacts, and a compliant layer having a top surface, a bottom surface and sloping peripheral edges, whereby the bottom surface of the compliant layer overlies a surface of the semiconductor chip. The assembly also includes a plurality of electrically conductive traces connected to the chip contacts of the semiconductor chip, the traces extending along the sloping edges to the top surface of the compliant layer. The assembly may include conductive terminals overlying the semiconductor chip, with the compliant layer supporting the conductive terminals over the semiconductor chip. The conductive traces have first ends electrically connected with the contacts of the semiconductor chip and second ends electrically connected with the conductive terminals. The conductive terminals are movable relative to the semiconductor chip.
Abstract:
A signal-segregating connector for use in a system having a printed circuit board, a first electrical structure and a second electrical structure. The connector includes a first set of conductive elements to convey signals between the first electrical structure and the printed circuit board, and a second set of conductive elements to convey signals between the first electrical structure and the second electrical structure.
Abstract:
An electrical interconnection device for establishing redundant contacts between the ends of two conductive elements to be mated, creating a electrical interconnection without capacitive stubs.
Abstract:
A microelectronic package includes a light sensitive microelectronic element having a front face including one or more contacts and a rear surface, and conductive leads having first ends connected to the one or more contacts and second ends connected to one or more conductive pads adjacent the light sensitive microelectronic element. The package also includes an at least partially transparent encapsulant covering the light sensitive microelectronic element, the conductive leads and the one or more conductive pads, whereby the one or more conductive pads are exposed on a surface of the encapsulant.
Abstract:
An IC package having multiple surfaces for interconnection with interconnection elements making connections from the IC chip to the I/O terminations of the package assembly which reside on more than one of its surfaces and which make interconnections to other devices or assemblies that are spatially separated.