Abstract:
A nuclear reactor fuel integrity monitor includes: a γ-ray detector which detects γ-ray of a specific radionuclide of a subject measurement medium of a nuclear reactor; a sample container which retains the subject measurement medium therein and surrounds the circumference of the γ-ray detector; and a measurement control device which performs a control so that a predetermined amount of the subject measurement medium is introduced into the sample container and calculates a concentration of the specific radionuclide from γ-ray data per each unit time detected by the γ-ray detector and a volume of the subject measurement medium introduced into the sample container.
Abstract:
An object is to reduce radiation exposure in a nuclear plant. A nuclear plant 1 is a nuclear power generating plant where steam is generated by thermal energy generated by nuclear fission of a nuclear fuel 2C in a nuclear reactor 2, and a turbine 8 is driven by the steam to generate heat by a power generator 10. After a nuclear plant 1 is newly constructed, when a primary cooling system of the nuclear reactor 2 raises the temperature to around a power operation temperature for the first time, zinc is injected into a primary coolant C1 present in the primary cooling system by a zinc injector 20.
Abstract:
A semiconductor device includes a semiconductor element having a main surface where an outside connection terminal pad is provided. The semiconductor element is connected to a conductive layer on a supporting board via a plurality of convex-shaped outside connection terminals provided on the outside connection terminal pad and a connection member; and the connection member commonly covers the convex-shaped outside connection terminals.
Abstract:
A relay board provided in a semiconductor device includes a first terminal, and a plurality of second terminals connecting to the first terminal by a wiring. The wiring connecting to the first terminal is split on the way so that the wiring connects to each of the second terminals.
Abstract:
To provide a small, high-performance semiconductor device in which contact between adjacent wires is prevented for increased flexibility in designing a wiring layout, and an efficient method for manufacturing the semiconductor device. The semiconductor device includes a substrate 10 having an electrode 21A arranged on its surface; and a first semiconductor element 11A which includes an electrode 22 arranged on its surface and which is supported by the substrate 10, wherein a first wire 41 is connected through a first bump 31 to at least one of the electrodes over the substrate 10 and semiconductor element 11A (i.e., at least one of the electrodes 21 and 22), and a second wire 42 is connected through a second bump 32 to a bonding portion of the wire 41.
Abstract:
A semiconductor device includes a semiconductor element; a plate member disposed opposite to an electronic-circuit forming portion of the semiconductor element; and an elastic body arranged in a compressed state between the semiconductor element and the plate member, wherein the elastic body includes at least one first protruding portion at one end in an extension direction of the elastic body, the first protruding portion being formed opposite to the electronic-circuit forming portion of the semiconductor element, and the semiconductor element and the plate member are fastened by an adhesive agent.
Abstract:
An object is to reduce radiation exposure in a nuclear plant. A nuclear plant 1 is a nuclear power generating plant where steam is generated by thermal energy generated by nuclear fission of a nuclear fuel 2C in a nuclear reactor 2, and a turbine 8 is driven by the steam to generate heat by a power generator 10. After a nuclear plant 1 is newly constructed, when a primary cooling system of the nuclear reactor 2 raises the temperature to around a power operation temperature for the first time, zinc is injected into a primary coolant C1 present in the primary cooling system by a zinc injector 20.
Abstract:
A semiconductor device is provided that forms a three-dimensional semiconductor device having semiconductor devices stacked on one another. In this semiconductor device, a hole is formed in a silicon semiconductor substrate that has an integrated circuit unit and an electrode pad formed on a principal surface on the outer side. The hole is formed by etching, with the electrode pad serving as an etching stopper layer. An embedded electrode is formed in the hole. This embedded electrode serves to electrically lead the electrode pad to the principal surface on the bottom side of the silicon semiconductor substrate.
Abstract:
A wiring board where an electronic component is mounted on a main surface via a bump and at least a part of the periphery of the electronic component is covered with resin, the wiring board includes a dam provided at least at a part of the periphery of an area where the electronic component is mounted, on the main surface of the wiring board; wherein a surface of the dam contacting the resin has a configuration where a curved line is continuously formed.
Abstract:
A relay board provided in a semiconductor device includes a first terminal, and a plurality of second terminals connecting to the first terminal by a wiring. The wiring connecting to the first terminal is split on the way so that the wiring connects to each of the second terminals.