Abstract:
A memory card has a wiring board, four memory chips stacked on a main surface of the wiring board, and a controller chip and an interposer mounted on a surface of the memory chip of the uppermost layer. The memory chips are stacked on the surface of the wiring board so that their long sides are directed in the same direction as that of the long side of the wiring board. The memory chip of the lowermost layer is mounted on the wiring board in a dislocated manner by a predetermined distance in a direction toward a front end of the memory card so as not to overlap the pads of the wiring board. The three memory chips stacked on the memory chip of the lowermost layer are disposed so that their short sides on which pads are formed are located at the front end of the memory card.
Abstract:
The semiconductor device includes a wiring substrate, a first and second semiconductor chips, and the heat sink. The wiring substrate has a first surface. The first and second semiconductor chips are disposed on the first surface. The heat sink is disposed on the first surface so as to cover the first semiconductor chip. The heat sink has a second surface and the third surface opposite the first surface. The second surface faces the first surface. The heat sink has a first cut-out portion. The first cut-out portion is formed at a position overlapping with the second semiconductor chip in plan view, and penetrates the heat sink in a direction from the third surface toward the second surface. The second surface is joined to at least four corners of the first surface.
Abstract:
In a semiconductor device formed by mounting a chip laminate including a semiconductor chip having a small diameter and a semiconductor chip having a large diameter over the top surface of a substrate, an excessive stress is prevented from being added to a joint of the two semiconductor chips. By mounting a first semiconductor chip having a large diameter over a support substrate and thereafter mounting a second semiconductor chip having a small diameter over the first semiconductor chip, it is possible to: suppress the inclination and unsteadiness of the second semiconductor chip mounted over the first semiconductor chip; and hence inhibit an excessive stress from being added to a joint of the first semiconductor chip and the second semiconductor chip.
Abstract:
To provide a semiconductor device having improved reliability.In a wiring board of BGA, an insulation layer has thereon a plurality of bonding leads. The insulation layer is comprised of a prepreg having a glass cloth and a resin layer not having the glass cloth. The prepreg has thereon the resin layer. The bonding leads are arranged directly on the soft resin layer and are therefore supported by this soft resin layer. When a load is applied to each of the bonding leads during flip chip bonding, the resin layer sinks, by which a stress applied to a semiconductor chip can be relaxed.
Abstract:
To improve reliability of a semiconductor device, in a flip-chip bonding step, a solder material that is attached to a tip end surface of a projecting electrode in advance and a solder material that is applied in advance over a terminal (bonding lead) are heated and thereby integrated and electrically connected to each other. The terminal includes a wide part (a first portion) with a first width W1 and a narrow part (a second portion) with a second width W2. When the solder material is heated, the thickness of the solder material arranged over the narrow part becomes smaller than the thickness of the solder material arranged in the wide part. Then, in the flip-chip bonding step, a projecting electrode is arranged over the narrow part and bonded onto the narrow part. Thus, the amount of protrusion of the solder material can be reduced.
Abstract:
Reliability of a semiconductor device is improved. Each of a plurality of terminals formed on a chip mounting surface included in a wiring substrate has a shape in which a narrow width portion is arranged between adjacent wide width portions in plan view. Moreover, a center of a tip end surface of each of a plurality of protruding electrodes formed on a semiconductor chip mounted on the wiring substrate is arranged at a position where it overlaps the narrow width portion in plan view, and the plurality of terminals and the plurality of protruding electrodes are electrically connected to each other via a solder member.
Abstract:
In a semiconductor device formed by mounting a chip laminate including a semiconductor chip having a small diameter and a semiconductor chip having a large diameter over the top surface of a substrate, an excessive stress is prevented from being added to a joint of the two semiconductor chips. By mounting a first semiconductor chip having a large diameter over a support substrate and thereafter mounting a second semiconductor chip having a small diameter over the first semiconductor chip, it is possible to: suppress the inclination and unsteadiness of the second semiconductor chip mounted over the first semiconductor chip; and hence inhibit an excessive stress from being added to a joint of the first semiconductor chip and the second semiconductor chip.
Abstract:
In a semiconductor device formed by mounting a chip laminate including a semiconductor chip having a small diameter and a semiconductor chip having a large diameter over the top surface of a substrate, an excessive stress is prevented from being added to a joint of the two semiconductor chips. By mounting a first semiconductor chip having a large diameter over a support substrate and thereafter mounting a second semiconductor chip having a small diameter over the first semiconductor chip, it is possible to: suppress the inclination and unsteadiness of the second semiconductor chip mounted over the first semiconductor chip; and hence inhibit an excessive stress from being added to a joint of the first semiconductor chip and the second semiconductor chip.
Abstract:
Reliability of a semiconductor device is improved. Each of a plurality of terminals formed on a chip mounting surface included in a wiring substrate has a shape in which a narrow width portion is arranged between adjacent wide width portions in plan view. Moreover, a center of a tip end surface of each of a plurality of protruding electrodes formed on a semiconductor chip mounted on the wiring substrate is arranged at a position where it overlaps the narrow width portion in plan view, and the plurality of terminals and the plurality of protruding electrodes are electrically connected to each other via a solder member.
Abstract:
In a semiconductor device formed by mounting a chip laminate including a semiconductor chip having a small diameter and a semiconductor chip having a large diameter over the top surface of a substrate, an excessive stress is prevented from being added to a joint of the two semiconductor chips. By mounting a first semiconductor chip having a large diameter over a support substrate and thereafter mounting a second semiconductor chip having a small diameter over the first semiconductor chip, it is possible to: suppress the inclination and unsteadiness of the second semiconductor chip mounted over the first semiconductor chip; and hence inhibit an excessive stress from being added to a joint of the first semiconductor chip and the second semiconductor chip.