Abstract:
A method for securing a semiconductor device component to another element is provided. An adhesive material includes a pressure-sensitive component and a curable component is used to at least temporarily secure the semiconductor device component and the other element to each other. The pressure-sensitive component of the adhesive material temporarily secures the semiconductor device component and the other element to one another. When the semiconductor device component and the other element are properly aligned, the curable component of the adhesive material may be cured to more permanently secure them to one another. For example, when a thermoset material is used as the curable component, it may be cured by heating, such as at a temperature of lower than about 200° C. and as low as about 120° C. or less.
Abstract:
Microfeature devices, microfeature workpieces, and methods for manufacturing microfeature devices and microfeature workpieces are disclosed herein. The microfeature workpieces have an integrated circuit, a surface, and a plurality of interconnect elements projecting from the surface and arranged in arrays on the surface. In one embodiment, a method includes forming a coating on the interconnect elements of the microfeature workpiece, producing a layer over the surface of the microfeature workpiece after forming the coating, and removing the coating from at least a portion of the individual interconnect elements. The coating has a surface tension less than a surface tension of the interconnect elements to reduce the extent to which the material in the layer wicks up the interconnect elements and produces a fillet at the base of the individual interconnect elements.
Abstract:
Flip-chip semiconductor assemblies, each including integrated circuit (IC) dice and an associated substrate, are electrically tested before encapsulation using an in-line or in-situ test socket or probes at a die-attach station. Those assemblies using “wet” quick-cure epoxies for die-attachment may be tested prior to the epoxy being cured by pressing the integrated circuit (IC) dice against interconnection bumps on the substrate for electrical connection, while those assemblies using “dry” epoxies may be cured prior to testing. In either case, any failures in the dice or in the interconnections between the dice and the substrates can be easily fixed, and the need for the use of “known good dice” (KGD) rework procedures during repair is eliminated.
Abstract:
Flip-chip semiconductor assemblies, each including integrated circuit (IC) dice and an associated substrate, are electrically tested before encapsulation using an in-line or in situ test socket or probes at a die-attach station. Those assemblies using “wet” quick-cure epoxies for die attachment may be tested prior to the epoxy being cured by pressing the integrated circuit (IC) dice against interconnection points on the substrate for electrical connection, while those assemblies using “dry” epoxies may be cured prior to testing. In either case, any failures in the dice or in the interconnections between the dice and the substrates can be easily fixed, and the need for the use of known-good-die (KGD) rework procedures during repair is eliminated.
Abstract:
A semiconductor package includes a substrate, a die attached and wire bonded to the substrate, and a die encapsulant encapsulating the die. The die includes a circuit side having a pattern of die contacts, planarized wire bonding contacts bonded to the die contacts, and a planarized polymer layer on the circuit side configured as stress defect barrier. A method for fabricating the package includes the steps of forming bumps on the die, encapsulating the bumps in a polymer layer, and then planarizing the polymer layer and the bumps to form the planarized wire bonding contacts. The method also includes the steps of attaching and wire bonding the die to the substrate, and then forming the die encapsulant on the die.
Abstract:
A ball grid array for a flip-chip assembly. The ball grid array includes a plurality of bumps bonded between an active surface of a semiconductor die and a top surface of a printed circuit board or any type of substrate carrier. The plurality of balls include at least one bump having a core material and an outer layer. The rigidity of the core material is greater than that of the material of the outer layer. Additionally, the melting temperature of the core material is higher than the material of the outer layer. By this arrangement, the core material with an outer layer provides bumps that are substantially uniform in height. In addition, the balls only procure marks or deformation to the core material during burn-in testing and reflow.
Abstract:
A semiconductor package structure for a ball grid array type package using a plurality of pieces of adhesive elastomer film to attach a semiconductor die to a substrate having conductive traces in order to alleviate thermal mismatch stress between the semiconductor die and the printed circuit board to which the packaged device is soldered, while maintaining the reliability of the packaged device itself.
Abstract:
A method of packaging semiconductor devices is described. In one embodiment, the method comprises providing a section of wafer mount tape, applying an adhesive layer to the wafer mount tape, stretching the wafer mount tape and the adhesive layer, attaching a wafer to the stretched adhesive layer, cutting the wafer and the adhesive layer, the wafer being cut into a plurality of die, and curing the wafer mount tape. In further embodiments, the method comprises removing at least one of the plurality of die from the wafer mount tape, the removed die having a portion of the adhesive layer coupled thereto, providing a die having a plurality of wire bonds coupled thereto, and coupling the adhesive layer on the removed die to the die having the wire bonds coupled thereto. In another aspect, the present invention is directed to a plurality of stacked semiconductor devices that comprise a first die, the first die having an upper surface, a second die positioned above the first die, the second die having a bottom surface, and an adhesive layer positioned between and coupled to each of the first die and the second die, the adhesive layer comprised of first and second surfaces, the first surface of the adhesive layer being coupled to the bottom surface of the second die thereby defining a first contact area, the second surface of the adhesive layer being coupled to the upper surface of the first die thereby defining a second contact area, the second contact area being less than the first contact area.
Abstract:
Semiconductor devices with porous insulative materials are disclosed. The porous insulative materials may include a consolidated material with voids dispersed therethrough. The voids may be defined by shells of microcapsules. The voids impart the dielectric materials with reduced dielectric constants and, thus, increased electrical insulation properties.
Abstract:
Semiconductor package support elements including cover members attached to one or more reject die sites are provided. Methods for making the support elements of the present invention and for making semiconductor packages using the same are also provided. Reject die sites on defective substrates of a support element are covered prior to the encapsulation process using a cover member. The cover member comprises, for example, pressure sensitive or temperature-activated tape, reject dies, or the like. The support elements and methods of the present invention virtually eliminate bleeding or flashing during encapsulation due to the presence of reject die sites. The support elements and methods of the present invention further ensure that functional dice are not sacrificed by being attached to reject die sites, thereby decreasing manufacturing costs while increasing yield of functional semiconductor packages.