Abstract:
Resilient contact structures are mounted directly to bond pads on semiconductor dies, prior to the dies being singulated (separated) from a semiconductor wafer. This enables the semiconductor dies to be exercised (e.g., tested and/or burned-in) by connecting to the semiconductor dies with a circuit board or the like having a plurality of terminals disposed on a surface thereof. Subsequently, the semiconductor dies may be singulated from the semiconductor wafer, whereupon the same resilient contact structures can be used to effect interconnections between the semiconductor dies and other electronic components (such as wiring substrates, semiconductor packages, etc.). Using the all-metallic composite interconnection elements of the present invention as the resilient contact structures, burn-in can be performed at temperatures of at least 150.degree. C., and can be completed in less than 60 minutes.
Abstract:
Resilient contact structures are mounted directly to bond pads on semiconductor dies, prior to the dies being singulated (separated) from a semiconductor wafer. This enables the semiconductor dies to be exercised (e.g., tested and/or burned-in) by connecting to the semiconductor dies with a circuit board or the like having a plurality of terminals disposed on a surface thereof. Subsequently, the semiconductor dies may be singulated from the semiconductor wafer, whereupon the same resilient contact structures can be used to effect interconnections between the semiconductor dies and other electronic components (such as wiring substrates, semiconductor packages, etc.). Using the all-metallic composite interconnection elements of the present invention as the resilient contact structures, burn-in can be performed at temperatures of at least 150.degree. C., and can be completed in less than 60 minutes.
Abstract:
Resilient contact structures are mounted directly to bond pads on semiconductor dies, prior to the dies being singulated (separated) from a semiconductor wafer. This enables the semiconductor dies to be exercised (e.g., tested and/or burned-in) by connecting to the semiconductor dies with a circuit board or the like having a plurality of terminals disposed on a surface thereof. Subsequently, the semiconductor dies may be singulated from the semiconductor wafer, whereupon the same resilient contact structures can be used to effect interconnections between the semiconductor dies and other electronic components (such as wiring substrates, semiconductor packages, etc.). Using the all-metallic composite interconnection elements of the present invention as the resilient contact structures, burn-in can be performed at temperatures of at least 150.degree. C., and can be completed in less than 60 minutes.
Abstract:
A method for manufacturing raised contacts on the surface of an electronic component includes bonding one end of a wire to an area, such as a terminal, of the electronic component, and shaping the wire into a wire stem configuration (including straight, bent two-dimensionally, bent three-dimensionally). A coating, having one or more layers, is deposited on the wire stem to (i) impart resilient mechanical characteristics to the shaped wire stem and (ii) more securely attach ("anchor") the wire stem to the terminal. Gold is one of several materials described that may be selected for the wire stem. A variety of materials for the coating, and their mechanical properties, are described. The wire stems may be shaped as loops, for example originating and terminating on the same terminal of the electronic component, and overcoated with solder. The use of a barrier layer to prevent unwanted reactions between the wire stem and its environment (e.g., with a solder overcoat) is described. Bonding a second end of the wire to a sacrificial member, then removing the sacrificial member, is described. A plurality of wire stems may be formed on the surface of the electronic component, from different levels thereon, and may be severed so that their tips are coplanar with one another. Many wire stems can be mounted, for example in an array pattern, to one or to both sides of electronic components including semiconductor dies and wafers, plastic and ceramic semiconductor packages, and the like.
Abstract:
An electrical connector (10) of the type having an array of signal contacts (22) surface mountable to pads of a circuit board (20), with at least one ground bus (40) having a plurality of post sections (44,50,52) insertable into through holes (34) of the circuit board. At least two of the post sections (50,52) include protuberances (54,56) proximate free ends thereof adapted to bear against side walls of the respective through holes upon insertion thereinto, for deflection of the shanks (62,64) of the post sections in the opposite direction. The protuberance of each of the at least two post sections extends in opposed directions along the row of posts, thus cooperating to act as a clamp of modest force to retain the connector to the board prior to contact soldering. The deflectable shank (62,64) preferably has a reduced cross-sectional area at root (66,68) facilitating deflection in the plastic region.
Abstract:
An electrical connector assembly is provided for mounting on a printed circuit board which includes at least a pair of mounting post-receiving holes and at least one solder tail-receiving aperture. The assembly includes a housing having at least a pair of mounting posts for positioning in the holes in the printed circuit board. At least one contact member is mounted on the housing and includes a solder tail for positioning in the aperture in the printed circuit board. The solder tail has a generally straight side and a projecting hook on an opposite side for retaining the connector assembly on the printed circuit board. The width of the solder tail between the straight side and the outermost point of the hook on the opposite side is no greater than the width of the aperture, and the centerline of the solder tail between its sides is offset, in the direction of the hook, relative to the centerline of the aperture when the mounting posts are aligned with the holes in the printed circuit board.
Abstract:
A device for mounting an element (10) on a board (20) which element (10) comprises at least one fixing lug (11) which is to engage in a slot (21) formed in the said board (20). According to the invention, the fixing lug (11) comprises a projection (12) engaging the board (20) inside the slot, and having a thickness which is at least equal to the width (1) of the slot (21). The invention is used to mount housings on printed circuit boards.
Abstract:
An electrical connector comprising a header with a plurality of terminal pins having means for retaining the header in position during soldering to a printed circuit board. Retention is accomplished by an offset formed as a crimp at the insertion end of at least one pair of terminals. The crimps exert opposite normal forces against one surface of their respective holes to retain the header during soldering.
Abstract:
A component lead tip protruding from a hole of a circuit board is split and displaced in order to attach the component to the circuit board. Trimming of the lead to a preferred length generally simultaneously with the splitting is also possible.
Abstract:
A thru-hole insertable terminal (10, 50, 60) includes an upper shank portion (12, 52, 66) preferably adapted for soldered securement to an end electrode (24) of a component (20), such as a capacitor. A lower shank portion (14, 54, 68) is dimensioned and adapted for minimal initial contact insertion into, and the temporary securement thereafter within, an oversized thru-hole (26, 58, 62) of a supporting substrate, such as a circuit board (28, 59, 64). At least one upwardly extending free-ended tab (32, 56, 72, 74) is formed in the lower terminal shank portion (14, 54, 68), and is oriented in the major plane thereof until after the insertion thereof within an associated substrate-formed thru-hole (26, 58, 62). Stop means (14b, 14c, 54b, 54c, 68b, 68c) also formed in the lower terminal shank portion is adapted to position the upper free end of the tab at an elevation preferably below the upper open end of a confining thru-hole. The tab (32, 56, 72, 74) is also dimensioned such that, when thusly positioned, the lower integral end thereof extends at least to the lower open end of the thru-hole. This results in the upper free end of the tab being pivoted against the sidewall of the confining thru-hole in response to a then downwardly protruding end region (14d, 54d, 68d) of the lower terminal shank portion being clinched against the underside of the supporting substrate (28, 59, 64). The thusly pivoted tab advantageously not only facilitates the temporary securement of the terminal within the associated thru-hole, but the establishment thereafter of a reliable, permanent soldered connection therebetween.