Abstract:
An array substrate includes a driver, a glass substrate having a driver mounting section where the driver is mounted, an anisotropic conductive material that is interposed between the driver and driver mounting section so as to electrically connect both and that at least includes a binder made of a thermosetting resin and conductive particles in the binder, and a heat supply part provided on at least the driver mounting section of the glass substrate for supplying heat to the anisotropic conductive material.
Abstract:
A power semiconductor package that includes a semiconductor die having at least two power electrodes and a conductive clip electrically and mechanically coupled to each power electrode.
Abstract:
A method of making an integrated circuit package. A leadframe having a die attach paddle surrounded by lead portions is formed. Middle channels underlying in said die attach paddle portion in a region thereof adapted to receive a first die are formed.
Abstract:
Embodiments of the present disclosure are directed towards techniques and configurations of interconnect structures having a polymer core in integrated circuit (IC) package assemblies. In one embodiment, an apparatus includes a first die having a plurality of transistor devices disposed on an active side of the first die and a plurality of interconnect structures electrically coupled with the first die, wherein individual interconnect structures of the plurality of interconnect structures have a polymer core, and an electrically conductive material disposed on the polymer core, the electrically conductive material being configured to route electrical signals between the transistor devices of the first die and a second die. Other embodiments may be described and/or claimed.
Abstract:
A device includes a first semiconductor chip including a first face, wherein a first contact pad is arranged over the first face. The device further includes a second semiconductor chip including a first face, wherein a first contact pad is arranged over the first face, wherein the first semiconductor chip and the second semiconductor chip are arranged such that the first face of the first semiconductor chip faces in a first direction and the first face of the second semiconductor chip faces in a second direction opposite to the first direction. The first semiconductor chip is located laterally outside of an outline of the second semiconductor chip.
Abstract:
A bonding structure comprising a contact pad, an anisotropic conductive film (ACF) and a contact structure is provided. The contact pad includes at least one recess, wherein a thickness of the contact pad is T, and a width of the at least one recess is B, The ACF is disposed on the contact pad and includes a plurality of conductive particles; each of the conductive particles is disposed in the at least one recess. A diameter of the conductive particles is A, and A is larger than B and T and satisfies B≦2(AT−T2)1/2. The contact structure is disposed on the ACF and electrically connected to the contact pad via the conductive particles. The disclosure also provides a flexible device including a substrate, a patterned insulating layer, at least one contact pad, ACF, and a contact structure.
Abstract:
A fingerprint sensing unit includes a carrier substrate, a fingerprint sensing chip on an upper surface of the carrier substrate, a molding layer, a light-pervious cover layer on the molding layer, and an adhesive layer between the light-pervious cover layer and the molding layer. The fingerprint sensing chip is electrically connected to the carrier substrate. The molding layer covers the fingerprint sensing chip.
Abstract:
3D joining of microelectronic components and a conductively self-adjusting anisotropic matrix are provided. In an implementation, an adhesive matrix automatically makes electrical connections between two surfaces that have electrical contacts, and bonds the two surfaces together. Conductive members in the adhesive matrix are aligned to automatically establish electrical connections between at least partially aligned contacts on each of the two surfaces while providing nonconductive adhesion between parts of the two surfaces lacking aligned contacts. An example method includes forming an adhesive matrix between two surfaces to be joined, including conductive members anisotropically aligned in an adhesive medium, then pressing the two surfaces together to automatically connect corresponding electrical contacts that are at least partially aligned on the two surfaces. The adhesive medium in the matrix secures the two surfaces together.
Abstract:
Devices and method related to stacked duplexers. In some embodiments, an assembly may include a first wafer-level packaging (WLP) device having a radio-frequency (RF) shield. The assembly may also include a second WLP device having an RF shield, the second WLP device positioned over the first WLP device such that the RF shield of the second WLP device is electrically connected to the RF shield of the first WLP device.
Abstract:
Various low stress compact device packages are disclosed herein. An integrated device package can include a first integrated device die and a second integrated device die. An interposer can be disposed between the first integrated device die and the second integrated device die such that the first integrated device die is mounted to and electrically coupled to a first side of the interposer and the second integrated device die is mounted to and electrically coupled to a second side of the interposer. The first side can be opposite the second side. The interposer can comprise a hole through at least the second side of the interposer. A portion of the second integrated device die can extend into the hole.