摘要:
A method for fabricating bump structure forms an under-bump metallurgy (UBM) layer in an opening of an encapsulating layer, and then forms a bump layer on the UBM layer within the opening of the encapsulating layer. After removing excess material of the bump layer from the upper surface of the encapsulating layer, the encapsulating layer is removed till a top portion of the bump layer protrudes from the upper surface of the encapsulating layer.
摘要:
An embodiment of the disclosure includes a conductive pillar on a semiconductor die. A substrate is provided. A bond pad is over the substrate. A conductive pillar is over the bond pad. The conductive pillar has a top surface, edge sidewalls and a height. A cap layer is over the top surface of the conductive pillar. The cap layer extends along the edge sidewalls of the conductive pillar for a length. A solder material is over a top surface of the cap layer.
摘要:
The mechanism of forming a metal bump structure described above resolves the delamination issues between a conductive layer on a substrate and a metal bump connected to the conductive layer. The conductive layer can be a metal pad, a post passivation interconnect (PPI) layer, or a top metal layer. By performing an in-situ deposition of a protective conductive layer over the conductive layer (or base conductive layer), the under bump metallurgy (UBM) layer of the metal bump adheres better to the conductive layer and reduces the occurrence of interfacial delamination. In some embodiments, a copper diffusion barrier sub-layer in the UBM layer can be removed. In some other embodiments, the UBM layer is not needed if the metal bump is deposited by a non-plating process and the metal bump is not made of copper.
摘要:
A package on package structure providing mechanical strength and warpage control includes a first package component, a second package component, and a first set of conductive elements coupling the first package component to the second package component. A first polymer-comprising material is molded on the first package component and surrounds the first set of conductive elements. The first polymer-comprising material has an opening therein exposing a top surface of the second package component. A third package component and a second set of conductive elements couples the second package component to the third package component.
摘要:
A semiconductor package structure comprises a substrate, a die bonded to the substrate, and one or more stud bump structures connecting the die to the substrate, wherein each of the stud bump structures having a stud bump and a solder ball encapsulating the stud bump to enhance thermal dissipation and reduce high stress concentrations in the semiconductor package structure.
摘要:
A semiconductor package includes a workpiece with a conductive trace and a chip with a conductive pillar. The chip is attached to the workpiece and a solder joint region is formed between the conductive pillar and the conductive trace. The distance between the conductive pillar and the conductive trace is less than or equal to about 16 μm.
摘要:
The mechanisms of using an interposer frame to package a semiconductor die enables fan-out structures and reduces form factor for the packaged semiconductor die. The mechanisms involve using a molding compound to attach the semiconductor die to the interposer frame and forming a redistribution layer on one or both sides of the semiconductor die. The redistribution layer(s) in the package enables fan-out connections and formation of external connection structures. Conductive columns in the interposer frame assist in thermal management.
摘要:
The described embodiments of mechanisms of forming a package on package (PoP) structure involve bonding with connectors with non-solder metal balls to a packaging substrate. The non-solder metal balls may include a solder coating layer. The connectors with non-solder metal balls can maintain substantially the shape of the connectors and control the height of the bonding structures between upper and lower packages. The connectors with non-solder metal balls are also less likely to result in bridging between connectors or disconnection (or cold joint) of bonded connectors. As a result, the pitch of the connectors with non-solder metal balls can be kept small.
摘要:
This disclosure relates to a bump structure on a substrate including a copper layer, wherein the copper layer fills an opening created in a dielectric layer and a polymer layer. The bump structure further includes an under-bump-metallurgy (UBM) layer lines the opening and the copper layer is deposited over the UBM layer. The bump structure further includes a surface of the copper layer facing away from the substrate is curved. This disclosure also relates to two bump structures with different heights on a substrate where a thickness of the first bump structure is different than a thickness of the second bump structure. This disclosure also relates to a semiconductor device including a bump structure.
摘要:
The invention relates to a bump structure of a semiconductor device. An exemplary structure for a semiconductor device comprises a substrate; a contact pad over the substrate; a passivation layer extending over the substrate having an opening over the contact pad; and a conductive pillar over the opening of the passivation layer, wherein the conductive pillar comprises an upper portion substantially perpendicular to a surface of the substrate and a lower portion having tapered sidewalls.