Abstract:
Packaging methods, material dispensing methods and apparatuses, and automatic measurement systems are disclosed. In one embodiment, a method of packaging semiconductor devices includes coupling a second die to a top surface of a first die, dispensing a first amount of underfill material between the first die and the second die, and capturing an image of the underfill material. Based on the image captured, a second amount or no additional amount of underfill material is dispensed between the first die and the second die.
Abstract:
A device includes a semiconductor substrate, an image sensor at a front surface of the semiconductor substrate, and a plurality of dielectric layers over the image sensor. A color filter and a micro lens are disposed over the plurality of dielectric layers and aligned to the image sensor. A through via penetrates through the semiconductor substrate. A Redistribution Line (RDL) is disposed over the plurality of dielectric layers, wherein the RDL is electrically coupled to the through via. A polymer layer covers the RDL.
Abstract:
The embodiments described provide apparatus and methods for bonding wafers to carriers with the surface contours of plates facing the substrates or carriers are modified either by re-shaping, by using height adjusters, by adding shim(s), or by zoned temperature control. The modified surface contours of such plates compensate the effects that may cause the non-planarity of bonded substrates.
Abstract:
Semiconductor device packaging methods and structures thereof are disclosed. In one embodiment, a method of packaging semiconductor devices includes coupling a plurality of second dies to a top surface of a first die, and determining a distance between each of the plurality of second dies and the first die. The method also includes determining an amount of underfill material to dispose between the first die and each of the plurality of second dies based on the determined distance, and disposing the determined amount of the underfill material under each of the plurality of second dies.
Abstract:
Packaging methods and structures for semiconductor devices that utilize a novel die attach film are disclosed. In one embodiment, a method of packaging a semiconductor device includes providing a carrier wafer and forming a die attach film (DAF) that includes a polymer over the carrier wafer. A plurality of dies is attached to the DAF, and the plurality of dies is packaged. At least the carrier wafer is removed from the packaged dies, and the packaged dies are singulated.
Abstract:
A conductive bump structure of a semiconductor device comprises a substrate comprising a major surface and conductive bumps distributed over the major surface of the substrate. Each of a first subset of the conductive bumps comprises a regular body, and each of a second subset of the conductive bumps comprises a ring-shaped body.
Abstract:
The mechanisms of forming a molding compound on a semiconductor device substrate to enable fan-out structures in wafer-level packaging (WLP) are provided. The mechanisms involve covering portions of surfaces of an insulating layer surrounding a contact pad. The mechanisms improve reliability of the package and process control of the packaging process. The mechanisms also reduce the risk of interfacial delamination, and excessive outgassing of the insulating layer during subsequent processing. The mechanisms further improve planarization end-point. By utilizing a protective layer between the contact pad and the insulating layer, copper out-diffusion can be reduced and the adhesion between the contact pad and the insulating layer may also be improved.
Abstract:
A package structure includes a first substrate bonded to a second substrate by Connecting metal pillars on the first substrate to connectors on the second substrate. A first metal pillar is formed overlying and electrically connected to a metal pad on a first region of the first substrate, and a second metal pillar is formed overlying a passivation layer in a second region of the first substrate. A first solder joint region is formed between metal pillar and the first connector, and a second solder joint region is formed between the second metal pillar and the second connector. The thickness of the first metal pillar is greater than the thickness of the second metal pillar.
Abstract:
An embodiment is a structure comprising a substrate, a first die, and a second die. The substrate has a first surface and a second surface opposite the first surface. The substrate has a through substrate via extending from the first surface towards the second surface. The first die is attached to the substrate, and the first die is coupled to the first surface of the substrate. The second die is attached to the substrate, and the second die is coupled to the first surface of the substrate. A first distance is between a first edge of the first die and a first edge of the second die, and the first distance is in a direction parallel to the first surface of the substrate. The first distance is equal to or less than 200 micrometers.
Abstract:
A surface metal wiring structure for a substrate includes one or more functional μbumps formed of a first metal and an electrical test pad formed of a second metal for receiving an electrical test probe and electrically connected to the one or more functional μbumps. The surface metal wiring structure also includes a plurality of sacrificial μbumps formed of the first metal that are electrically connected to the electrical test pads, where the sacrificial μbumps are positioned closer to the electrical test pad than the one or more functional μbumps.