Abstract:
A multi-layer pillar and method of fabricating the same is provided. The multi-layer pillar is used as an interconnect between a chip and substrate. The pillar has at least one low strength, high ductility deformation region configured to absorb force imposed during chip assembly and thermal excursions
Abstract:
The invention relates to a method for producing an interconnection pad on a conducting element comprising an upper face and a side wall; the method being executed from a substrate at least the upper face of which is insulating; the conducting element going through at least an insulating portion of the substrate, the method being characterized in that it comprises the sequence of the following steps: a step of embossing the conducting element, a step of forming, above the upper insulating face of the substrate, a stack of layers comprising at least one electrically conducting layer and one electrically resistive layer, a step of partially removing the electrically resistive layer, a step of electrolytic growth on the portion of the electrically conducting layer so as to form at least one interconnection pad on said conducting element.
Abstract:
A bump electrode is formed on an electrode pad using a Cu core ball in which a core material is covered with solder plating, and a board which has bump electrodes such as semiconductor chip or printed circuit board mounts such a bump electrode. Flux is coated on a substrate and the bump electrodes are then mounted on the electrode pad. In a step of heating the electrode pad and the Cu core ball to melt the solder plating, a heating rate of the substrate is set to have not less than 0.01° C./sec and less than 0.3.
Abstract:
The invention relates to a method for producing an interconnection pad on a conducting element comprising an upper face and a side wall; the method being executed from a substrate at least the upper face of which is insulating; the conducting element going through at least an insulating portion of the substrate, the method being characterized in that it comprises the sequence of the following steps: a step of embossing the conducting element, a step of forming, above the upper insulating face of the substrate, a stack of layers comprising at least one electrically conducting layer and one electrically resistive layer, a step of partially removing the electrically resistive layer, a step of electrolytic growth on the portion of the electrically conducting layer so as to form at least one interconnection pad on said conducting element.
Abstract:
A chip package includes a substrate having a positive feature, which is defined on a surface of the substrate and which protrudes above a region on the surface proximate to the positive feature. Furthermore, the chip package includes a mechanical reinforcement mechanism defined on the substrate proximate to the positive feature that increases a lateral shear strength of the positive feature relative to the substrate. In this way, the chip package may facilitate increased reliability of a multi-chip module (MCM) that includes the chip package.
Abstract:
A system and method for forming metal bumps is provided. An embodiment comprises attaching conductive material to a carrier medium and then contacting the conductive material to conductive regions of a substrate. Portions of the conductive material are then bonded to the conductive regions using a bonding process to form conductive caps on the conductive regions, and residual conductive material and the carrier medium are removed. A reflow process is used to reflow the conductive caps into conductive bumps.
Abstract:
An electronic component includes: an active surface; a plurality of external connection terminals included in the active surface; a bump electrode disposed to the active surface, the bump electrode including: an internal resin formed on the active surface as a core; and a conductive film on a surface of the internal resin, the internal resin being formed in a nearly half-cylindrical shape having a transverse section of one of a nearly semicircular shape, a nearly semielliptical shape, and a nearly trapezoidal shape and extending orthogonal to the transverse section, the transverse section being orthogonal to the active surface; and a global wiring line disposed on the active surface and connecting between the plurality of external connection terminals, and at least one of the external connection terminals being electrically connected to the conductive film.
Abstract:
A semiconductor device includes a bump electrode including a bump made of resin, a base layer disposed on the bump, and a conductive surface layer disposed on the base layer. The base layer has ductility lower than that of the conductive surface layer and includes base regions which are spaced from each other and which are arranged at least in a top zone of the bump electrode.
Abstract:
A method of forming conductive pillars on a semiconductor wafer in which the conductive pillars are plated with a protecting coating of Ni, Co, Cr, Rh, NiP, NiB , CoWP, or CoP. Only the side of the conductive pillars are plated. The ends of the conductive pillars are free of the protective plating so that the conductive pillars can be readily joined to the pads of a packaging substrate. Also disclosed is a sidewall-protected conductive pillar having a protective coating of Ni, Co, Cr, Rh, NiP, NiB , CoWP, or CoP thereon.
Abstract:
A semiconductor device including a semiconductor element, an electrode pad formed on the semiconductor element, and a bump electrode conductively connected to the electrode pad which includes a resin bump formed on an active face of the semiconductor element and a conductive layer provided from the electrode pad to the surface of the resin bump, the conductive layer and the resin bump being arranged without adhesion.