Abstract:
In accordance with one embodiment, a stress buffer (40) is formed between a power metal structure (90) and passivation layer (30). The stress buffer (40) reduces the effects of stress imparted upon the passivation layer (30) by the power metal structure (90). In accordance with an alternative embodiment, a power metal structure (130A) is partitioned into segments (1091), whereby electrical continuity is maintained between the segments (1090) by remaining portions of a seed layer (1052) and adhesion/barrier layer (1050). The individual segments (1090) impart a lower peak stress than a comparably sized continuous power metal structure (9).
Abstract:
In a data carrier (1) with a chip module (3), the chip (5) of the chip module (3) is provided, in the region of its chip connecting layers (8), with a respective wire connecting means which is formed by a flat metal layer (10) and whereto an end (13), bonded in a wedge-shape fashion, of a bond wire (11) is connected.
Abstract:
Method for forming a solder bump (42) on a substrate (35) include the steps of forming an under bump metallurgy layer (36) on a substrate, forming a solder bump on the under bump metallurgy layer, and forming an intermetallic portion (33) of the under bump metallurgy layer adjacent the solder bump. In particular, the solder bump has a predetermined shape and this predetermined shape is retained while forming the intermetallic portion of the under bump metallurgy layer. This predetermined shape preferably has a flat surface opposite the substrate thus providing a uniform thickness of solder during the formation of the intermetallic portion. Related structures are also disclosed.
Abstract:
A 3D interconnect structure and method of manufacture are described in which metal redistribution layers (RDLs) are integrated with through-silicon vias (TSVs) and using a "plate through resist" type process flow. A silicon nitride or silicon carbide passivation layer may be provided between the thinned device wafer back side and the RDLs to provide a hermetic barrier and polish stop layer during the process flow.
Abstract:
A method forms a micropad (30, 70, 42) to an external contact (14, 54, 78) of a first semiconductor device (12, 52, 74). A stud (20, 24, 66, 88, 82) of copper is formed over the external contact. The stud extends above a surface of the first semiconductor device. The stud of copper is immersed in a solution of tin. The tin (28) replaces at least 95 percent of the copper of the stud and preferably more than 99 percent. The result is a tin micropad that has less than 5 percent copper by weight. Since the micropad is substantially pure tin, intermetallic bonds will not form during the time while the micropads of the first semiconductor device are not bonded. Smaller micropad dimensions result since intermetallic bonds do not form. When the first semiconductor device is bonded to an overlying second semiconductor device, the bond dimensions do not significantly increase the height of stacked chips.
Abstract:
Es wird ein Verfahren zur Herstellung von optoelektronischen Bauelementen (1) angegeben, bei dem eine Mehrzahl von Halbleiterkörpern (2) mit jeweils einer Halbleiterschichtenfolge bereitgestellt wird. Weiterhin wird ein Bauelementträgerverbund (30) mit einer Mehrzahl von Anschlussflächen (35) bereitgestellt. Die Halbleiterkörper (2) werden relativ zum Bauelementträgerverbund (30) positioniert. Zwischen den Anschlussflächen (35) und den zugeordneten Halbleiterkörpern (2) wird eine elektrisch leitende Verbindung hergestellt und die Halbleiterkörper werden an dem Bauelementträgerverbund (30) befestigt. Die optoelektronischen Bauelemente (2) werden fertig gestellt, wobei für jedes optoelektronische Bauelement (1) ein Bauelementträger (3) aus dem Bauelementträgerverbund (30), auf dem die Halbleiterkörper (2) befestigt sind, ausgebildet wird. Ferner wird ein optoelektronisches Bauelement angegeben.
Abstract:
Packaged semiconductor components and methods for manufacturing packaged semiconductor components. In one embodiment a semiconductor component (100) comprises a die (20) having a semiconductor substrate (12) and an integrated circuit (26). The substrate has a first side (14), a second side (17), a sidewall between the first and second sides, a first indentation (21a) at the sidewall around a periphery of the first side, and a second indentation (21b) at the sidewall around a periphery of the second side. The component further includes a first exterior cover (51) at the first side and a second exterior cover (71) at the second side. The first exterior cover has a first extension (54) in the first indentation, and the second exterior cover has a second extension (74) in the second indentation. The first and second extensions are spaced apart from each other by an exposed portion (23) of the sidewall.