Abstract:
A stacked semiconductor device primarily comprises semiconductor packages with a plurality of micro contacts and solder paste to soldering the micro contacts. Each semiconductor package comprises a substrate and a chip disposed on the substrate. The micro contacts of the bottom semiconductor package are a plurality of top bumps located on the upper surface of the substrate. The micro contacts of the top semiconductor package are a plurality of bottom bumps located on the lower surface of the substrate. The bottom bumps are aligned with the top bumps and are electrically connected each other by the solder paste. Therefore, the top bumps and the bottom bumps have the same soldering shapes and dimensions for evenly soldering to avoid breakages of the micro bumps during stacking.
Abstract:
This specification describes techniques for manufacturing an electronic system module. The module includes flexible multi-layer interconnection circuits with trace widths as narrow as 5 microns or less. A glass panel manufacturing facility, similar to those employed for making liquid crystal display, LCD, panels is preferably used to fabricate the interconnection circuits. A multi-layer interconnection circuit is fabricated on the glass panel using a release layer. A special assembly layer is formed over the interconnection circuit comprising a thick dielectric layer with openings formed at input/output (I/O) pad locations. Solder paste is deposited in the openings using a squeegee to form wells filled with solder. IC chips are provided with gold stud bumps at I/O pad locations, and these bumps are inserted in the wells to form flip chip connections. The IC chips are tested and reworked. The same bump/well connections can be used to attach fine-pitch cables. Module packaging layers are provided for hermetic sealing and for electromagnetic shielding. A blade server or supercomputer embodiment is also described.
Abstract:
Manufacturing of miniaturized three-dimensional electric components are presented, as well as components manufactured by the methods. The manufacturing methods comprise micro-replication of at least one master structure, e.g. via a mould structure, in at least one polymer layer onto which layer at least one conductive path is provided.
Abstract:
An adhesive for bonding and securing a semiconductor chip to a circuit board and electrically connecting the electrodes of the two, and containing an adhesive resin composition and an inorganic filler being contained in an amount of 10 to 200 parts by weight of 100 parts by weight of the adhesive resin composition.
Abstract:
A method of bonding two elements such as wafers used in microelectronics applications is disclosed. One inventive aspect relates to a method for bonding comprising producing on a first main surface of a first element a first solder ball, producing on a first main surface of a second element a second solder ball, providing contact between the first solder ball and the second solder ball, bonding the first element and the second element by applying a reflow act whereby the solder balls melt and form a joined solder ball structure. Prior to the bonding, the first solder ball is laterally embedded in a nonconductive material, such that the upper part of the first solder ball is not covered by the non-conductive material. Devices related to such methods are also disclosed.
Abstract:
A chip package includes a chip, a carrier, and at least a bump connecting structure for connecting the chip to the carrier. The bump connecting structure includes a first metal bump disposed on a chip pad of the chip and has a first height relative to a passivation layer of the chip, a second metal bump disposed on a carrier pad of the carrier and has a second height relative to a solder mask layer of the carrier, and a middle metal part disposed between the first and the second metal bumps. The sum of the minimum distance between the first and the second metal bumps, the first height of the first metal bump, and the second height of the second metal bump is less than 60 micrometers. The melting point of the middle metal part is lower than that of the first and the second metal bumps.
Abstract:
A contact structure includes contact members having leg portions which are deflected using internal stresses. Since the internal stress is used, the leg portions of the contact members are easily and reliably deflected even when the size of the contact members is reduced in accordance with the size reduction of an electronic component. Since the leg portions are elastically deformed and function as elastic contacts, a strain caused by a difference in coefficient of thermal expansion between the electronic component and the substrate can be absorbed by the contact members. In addition, since a plurality of elastic contacts are provided, even if there is a displacement between the electronic component and the substrate, an electrical connection between the electronic component and the substrate is reliably obtained.
Abstract:
The present invention includes a semiconductor package that forms the solder array joints on the die surface and corresponding BGA substrate and PCB respectively. The life times of array solder joints are increased through the use of two sets of array joints. The top array comprises a plurality of high melting solder joints and a plurality of low melting solder joints, while the bottom array comprises a plurality of high melting solder joints only. The reflow temperature of SMT assembly is between the aforementioned high melting point and low melting point of solder joints. In addition, each solder joint comprises a flat surface at its front edge.
Abstract:
A bumping process, a bump structure, a packaging process and a package structure are described. The bump structure comprises a first solder portion, a second solder portion and a conductive layer. The second solder portion is disposed on the first solder portion and the conductive layer is disposed between the first solder portion and the second solder portion. The bumping process produces a bump structure having a greater height. The bumping process can also be applied in a package process to form a package structure having a highly reliable connection between a chip and a packaging substrate.
Abstract:
A first substrate has a plurality of bumps and a second substrate has a plurality of openings at positions in registration with the plurality of bumps when the first and second substrates are placed one on top of the other in a confronting manner. The first and second substrates are put together by fusing a sealing wall formed on the second substrate, to hermetically seal an electronic device lying on the first substrate therein. Gas that may be generated upon fusing of the sealing wall can be effectively removed through the openings in the second substrate.