Abstract:
The mechanisms for forming bumps on packaged dies and package substrates reduce variation of bump heights across the packaged dies and packaged substrates. Bumps are designed to have different widths to counter the higher plating current near edge(s) of dies or substrates. Bump sizes can be divided into different zones depending on the bump patterns and densities across the packaged die and/or substrates. Smaller bumps near edges reduce the thickness of plated film(s), which would have been thicker due to being near the edges. As a result, the bump heights across the packaged dies and/or substrates can be kept significantly constant and chip package can be properly formed.
Abstract:
A method includes bonding a carrier over a top die. The method further includes curing an underfill disposed between a substrate and the top die. The method further includes applying a force over the carrier during the curing. The method further includes removing the carrier from the top die.
Abstract:
The mechanisms of forming a semiconductor device package described above provide a low-cost manufacturing process due to the relative simple process flow. By forming an interconnecting structure with a redistribution layer(s) to enable bonding of one or more dies underneath a package structure, the warpage of the overall package is greatly reduced. In addition, interconnecting structure is formed without using a molding compound, which reduces particle contamination. The reduction of warpage and particle contamination improves yield. Further, the semiconductor device package formed has low form factor with one or more dies fit underneath a space between a package structure and an interconnecting structure.
Abstract:
A system and method are disclosed for providing a through silicon via (TSV) with a barrier pad deposited below the top surface of the TSV, the top surface having reduced topographic variations. A bottom TSV pad is deposited into a via and then polished so the top surface is below the substrate top surface. A barrier pad is then deposited in the via, and a top TSV pad deposited on the barrier pad. The top TSV barrier pad is polished to bring the top surface of the top TSV pad about level with the substrate. The barrier pad may be less than about 1 microns thick, and the top TSV pad may be less than about 6 microns thick. The barrier pad may be a dissimilar metal from the top and bottom TSV pads, and may be selected from a group comprising titanium, tantalum, cobalt, nickel and the like.
Abstract:
A package structure includes a first substrate bonded to a second substrate by connecting metal pillars on the first substrate to connectors on the second substrate. A first metal pillar is formed overlying and electrically connected to a metal pad on a first region of the first substrate, and a second metal pillar is formed overlying a passivation layer in a second region of the first substrate. A first solder joint region is formed between metal pillar and the first connector, and a second solder joint region is formed between the second metal pillar and the second connector. The thickness of the first metal pillar is greater than the thickness of the second metal pillar.
Abstract:
A method includes forming a first oxide layer on a surface of an integrated heat spreader, and forming a second oxide layer on top surfaces of fins, wherein the fins are parts of a heat sink. The integrated heat spreader is bonded to the heat sink through the bonding of the first oxide layer to the second oxide layer.
Abstract:
Semiconductor device packaging methods and structures thereof are disclosed. In one embodiment, a method of packaging semiconductor devices includes coupling a plurality of second dies to a top surface of a first die, and determining a distance between each of the plurality of second dies and the first die. The method also includes determining an amount of underfill material to dispose between the first die and each of the plurality of second dies based on the determined distance, and disposing the determined amount of the underfill material under each of the plurality of second dies.
Abstract:
A method includes forming a dielectric layer over a substrate, forming an interconnect structure over the dielectric layer, and bonding a die to the interconnect structure. The substrate is then removed, and the dielectric layer is patterned. Connectors are formed at a surface of the dielectric layer, wherein the connectors are electrically coupled to the die.
Abstract:
A die having a ledge along a sidewall, and a method of forming the die, is provided. A method of packaging the die is also provided. A substrate, such as a processed wafer, is diced by forming a first notch having a first width, and then forming a second notch within the first notch such that the second notch has a second width less than the first width. The second notch extends through the substrate, thereby dicing the substrate. The difference in widths between the first width and the second width results in a ledge along the sidewalls of the dice. The dice may be placed on a substrate, e.g., an interposer, and underfill placed between the dice and the substrate. The ledge prevents or reduces the distance the underfill is drawn up between adjacent dice. A molding compound may be formed over the substrate.