Abstract:
In some embodiments, to increase the height-to-pitch ratio of a solder connection that connects different structures with one or more solder balls, only a portion of a solder ball's surface is melted when the connection is formed on one structure and/or when the connection is being attached to another structure. In some embodiments, non-solder balls are joined by an intermediate solder ball (140i). A solder connection may be surrounded by a solder locking layer (1210) and may be recessed in a hole (1230) in that layer. Other features are also provided.
Abstract:
An interconnect (124) suitable for attachment of integrated circuit assemblies to each other comprises a polymer member (130), possibly dielectric, coated with a conductive material (144) which provides one or more conductive lines. In some embodiments, the conductive material covers a part, but not all, of the polymer member. In some embodiments, multiple conductive lines are formed on the polymer member. In some embodiments, the polymer member is conductive. Such interconnects replace metal bond wires in some embodiments. Other features are also provided.
Abstract:
A device and method for localizing underfill includes a substrate, a plurality of dies, and underfill material. The substrate includes a plurality of contacts and a plurality of cavities separated by a plurality of mesas. The plurality of dies is mounted to the substrate using the plurality of contacts. The underfill material is located between the substrate and the dies. The underfill material is localized into a plurality of regions using the mesas. Each of the contacts is located in a respective one of the cavities. In some embodiments, the substrate further includes a plurality of channels interconnecting the cavities. In some embodiments, the substrate further includes a plurality of intra-cavity mesas for further localizing the underfill material. In some embodiments, outer edges of a first one of the dies rest on first mesas located on edges of a first one of the cavities.
Abstract:
An interposer (110) has contact pads at the top and/or bottom surfaces for connection to circuit modules (e.g. ICs 112). The interposer includes a substrate made of multiple layers (110.i). Each layer can be a substrate (110S), possibly a ceramic substrate, with circuitry. The substrates extend vertically. Multiple interposers are fabricated in a single structure (310) made of vertical layers (310.i) corresponding to the interposers' layers. The structure is diced along horizontal planes (314) to provide the interposers. An interposer's vertical conductive lines (similar to through-substrate vias) can be formed on the substrates' surfaces before dicing and before all the substrates are attached to each other. Thus, there is no need to make through-substrate holes for the vertical conductive lines. Non-vertical features can also be formed on the substrates' surfaces before the substrates are attached to each other. Other embodiments are also provided.
Abstract:
An apparatus relating generally to a substrate is disclosed. In such an apparatus, a first bond via array has first wires extending from a surface of the substrate. A second bond via array has second wires extending from the surface of the substrate. The first bond via array is disposed at least partially within the second bond via array. The first wires of the first bond via array are of a first height. The second wires of the second bond via array are of a second height greater than the first height for coupling of at least one die to the first bond via array at least partially disposed within the second bond via array.
Abstract:
A microelectronic package may include a substrate having first and second regions, a first surface and a second surface remote from the first surface; at least one microelectronic element overlying the first surface within the first region; electrically conductive elements at the first surface within the second region; a support structure having a third surface and a fourth surface remote from the third surface and overlying the first surface within the second region in which the third surface faces the first surface, second and third electrically conductive elements exposed respectively at the third and fourth surfaces and electrically connected to the conductive elements at the first surface in the first region; and wire bonds defining edge surfaces and having bases electrically connected through ones of the third conductive elements to respective ones of the second conductive elements and ends remote from the support structure and the bases.
Abstract:
The technology relates to a system on chip (SoC). The SoC may include a plurality of network layers which may assist electrical communications either horizontally or vertically among components from different device layers. In one embodiment, a system on chip (SoC) includes a plurality of network layers, each network layer including one or more routers, and more than one device layers, each of the plurality of network layers respectively bonded to one of the device layers. In another embodiment, a method for forming a system on chip (SoC) includes forming a plurality of network layers in an interconnect, wherein each network layer is bonded to an active surface of a respective device layer in a plurality of device layer.
Abstract:
A memory structure is provided, including a NAND block comprising a plurality of oxide layers, the plurality of layers forming a staircase structure at a first edge of the NAND block, a plurality of vias disposed on the staircase structure of NAND block, two or more of plurality of vias terminating along a same plane, a plurality of first bonding interconnects disposed on the plurality of vias, a plurality of bitlines extending across the NAND block, and a plurality of second bonding interconnects disposed along the bitlines. The memory structure may be stacked on another of the memory structure to form a stacked memory device.
Abstract:
Representative implementations of devices and techniques provide interconnect structures and components for coupling various carriers, printed circuit board (PCB) components, integrated circuit (IC) dice, and the like, using tall and/or fine pitch physical connections. Multiple layers of conductive structures or materials are arranged to form the interconnect structures and components. Nonwettable barriers may be used with one or more of the layers to form a shape, including a pitch of one or more of the layers.
Abstract:
Apparatuses and methods are described. This apparatus includes a bridge die having first contacts on a die surface being in a molding layer of a reconstituted wafer. The reconstituted wafer has a wafer surface including a layer surface of the molding layer and the die surface. A redistribution layer on the wafer surface includes electrically conductive and dielectric layers to provide conductive routing and conductors. The conductors extend away from the die surface and are respectively coupled to the first contacts at bottom ends thereof. At least second and third IC dies respectively having second contacts on corresponding die surfaces thereof are interconnected to the bridge die and the redistribution layer. A first portion of the second contacts are interconnected to top ends of the conductors opposite the bottom ends thereof in part for alignment of the at least second and third IC dies to the bridge die.