Abstract:
An embodiment is a bump bond pad structure that comprises a substrate comprising a top layer, a reinforcement pad disposed on the top layer, an intermediate layer above the top layer, an intermediate connection pad disposed on the intermediate layer, an outer layer above the intermediate layer, and an under bump metal (UBM) connected to the intermediate connection pad through an opening in the outer layer. Further embodiments may comprise a via mechanically coupling the intermediate connection pad to the reinforcement pad. The via may comprise a feature selected from the group consisting of a solid via, a substantially ring-shaped via, or a five by five array of vias. Yet, a further embodiment may comprise a secondary reinforcement pad, and a second via mechanically coupling the reinforcement pad to the secondary reinforcement pad.
Abstract:
A process is disclosed for high density indium bumping of microchips by using an innovative template wafer upon which the bumps are initially fabricated. Once fabricated, these bumps are transferred to the microchip, after which can be hybridized to another microchip. Such a template wafer is reusable, and thus provides an economical way to fabricate indium bumps. Reusability also eliminates nonuniformities in bump shape and size in serial processing of separate microchips, which is not the case for other indium bump fabrication processes. Such a fabrication process provides a way to form relatively tall indium bumps and accomplishes this without the standard thick photoresist liftoff process. The described process can be suitable for bump pitches under 10 microns, and is only limited by the resolution of the photolithography equipment used.
Abstract:
A method for maintaining non-porous nickel layer at a nickel/passivation interface of a semiconductor device in a nickel/gold electroless plating process. The method can include sequentially electroless plating of each of the nickel layer and gold layer on the device layer to pre-determined thicknesses to prevent corrosion of the nickel layer from reaching the device layer during the electroless gold plating process.
Abstract:
Photoresist compositions and methods suitable for depositing a thick photoresist layer in a single coating application are provided. Such photoresist layers are particularly suitable for use in chip scale packaging, for example, in the formation of metal bumps.
Abstract:
A semiconductor component and methods for manufacturing the semiconductor component that includes a double exposure of a layer of photoresist or the use of multiple layers of photoresist. A metallization structure is formed on a layer of electrically conductive material that is disposed on a substrate and a layer of photoresist is formed on the metallization structure. The layer of photoresist is exposed to light and developed to remove a portion of the photoresist layer, thereby forming an opening. Then, a larger portion of the photoresist layer is exposed to light and an electrically conductive interconnect is formed in the opening. The larger portion of the photoresist layer that was exposed to light is developed to expose edges of the electrically conductive interconnect and portions of the metallization structure. A protection layer is formed on the top and edges of the electrically conductive interconnect and on the exposed portions of the metallization structure.
Abstract:
An integrated circuit packaging system and method of manufacture thereof includes: leads and a paddle; a first encapsulant molded between the leads and the paddle, the first encapsulant thinner than the leads; a non-conductive layer over the paddle; and conductive traces directly on the leads, the first encapsulant, and the non-conductive layer.
Abstract:
A method of manufacture of an integrated circuit packaging system includes: providing a pre-plated leadframe having a contact pad and a die paddle pad; forming an isolated contact from the pre-plated leadframe and the contact pad; mounting an integrated circuit die over the die paddle pad; and encapsulating with an encapsulation the integrated circuit die and the isolated contact, the encapsulation having a bottom surface which is planar and exposing in the bottom surface only the contact pad and the die paddle pad.
Abstract:
A method of manufacture of an integrated circuit packaging system includes: forming a base structure having a die paddle, an outer lead, and an inner lead between the die paddle and the outer lead, with a pre-plated finish on a base structure system side of the base structure; mounting an integrated circuit device to a side of the die paddle opposite the paddle system side; attaching an interconnect to the integrated circuit device and a side of the inner lead opposite the inner lead system side; applying an encapsulation around the integrated circuit device, the interconnect, and the base structure with the pre-plated finish exposed from the encapsulation; and forming an inward channel in the encapsulation to electrically isolate the inner lead.
Abstract:
A routing layer for a semiconductor die is disclosed. The routing layer includes traces interconnecting integrated circuit bond-pads to UBMs. The routing layer is formed on a layer of dielectric material. The routing layer includes conductive traces arranged underneath the UBMs as to absorb stress from solder bumps attached to the UMBs. Traces beneath the UBMs protect parts of the underlying dielectric material proximate the solder bumps, from the stress.
Abstract:
A semiconductor device has a carrier. A semiconductor wafer including a semiconductor die is mounted to the carrier with an active surface of the semiconductor die facing away from the carrier. A plurality of bumps is formed over the active surface of the semiconductor die. An opening is formed in a periphery of the semiconductor die. An encapsulant is deposited over the carrier and semiconductor die, in the opening, and around the plurality of bumps such that an exposed portion of the plurality of bumps is devoid of encapsulant. A conductive via is formed through the encapsulant, within the opening, and extends to the carrier. A conductive layer is formed over the encapsulant and electrically connects to the conductive via and the exposed portion of the plurality of bumps. The carrier is removed to expose an end of the conductive via.