摘要:
A method for producing a circuit board having an integrated electronic component comprising providing a circuit board substrate having a first substrate surface and a second substrate surface, securing an integrated electronic component to the first substrate surface, and disposing a first dielectric layer on the first substrate surface and over the first integrated electronic component. The method additionally includes disposing a metallic layer on the first dielectric layer to produce an integrated electronic component assembly, producing in the integrated electronic component assembly at least one via having a metal lining in contact with the metallic layer, and disposing a second dielectric layer over the via and over the metallic layer. At least one metal-lined opening is formed in the second dielectric layer and in the first dielectric layer to expose at least part of the integrated electronic component, and to couple the metal lining of the opening to the first integrated electronic component to produce a circuit board having at least one integrated electronic component. A multi-layer printed circuit board having at least one prefabricated, integrated electronic component.
摘要:
Methods for making circuit substrates and electrical assemblies are disclosed. A conductive composition is disposed between confronting conductive regions and can be cured to form a via structure. The conductive composition includes conductive particles and a carrier. The carrier can include a fluxing agent and an epoxy-functional resin having a viscosity of less than about 1000 centipoise at 25° C.
摘要:
Printed circuit substrates and electrical assemblies including a conductive composition are disclosed. The printed circuit substrate and the electrical assembly embodiments comprise a first conducting region and a second conducting region. A dielectric layer is disposed between the first and second conducting regions. An aperture is disposed in the dielectric layer and a via structure including the conductive composition is disposed in the aperture. The conductive composition is preferably in a cured state and electrically communicates with the first and second conducting regions. In preferred embodiments, the conductive composition comprises conductive particles in an amount of at least about 75 wt. % based on the weight of the composition. At least 50% by weight of the conductive particles have melting points of less than about 400.degree. C. The composition further includes a carrier including an epoxy-functional resin in an amount of at least about 50 wt. % based on the weight of the carrier, and a fluxing agent in an amount of at least about 0.1 wt % based on the weight of the carrier. The epoxy functional resin can have a viscosity of less than about 1000 centipoise at 25.degree. C.
摘要:
Methods for forming multilayer circuit structures are disclosed. In some embodiments, conductive layers, dielectric layers and conductive posts can be formed on both sides of a circuitized core structure. The conductive posts are disposed in the dielectric layers and can be stacked to form a generally vertical conduction pathway which passes at least partially through a multilayer circuit structure. The formed multilayer circuit structures can occupy less space than corresponding multilayer circuit structures with stacked via structures.
摘要:
An optical apparatus including an optical substrate having an embedded waveguide and an optical device adapted to receive light transmitted from an end of the waveguide. The optical apparatus includes a coupling structure for coupling the optical device to the substrate. The coupling structure has a thin metallic layer with an aperture. At least a portion of the optical device is disposed in the aperture. A method for making an optical apparatus comprising forming an optical substrate having a waveguide embedded therein; depositing a metal layer over an end of the waveguide; and depositing a polymeric layer over the metal layer. An aperture is formed in the metal layer and in the polymeric layer by removing a portion of the metal layer and a portion of the polymeric layer disposed over the end of the waveguide. The method for making an optical apparatus also comprises inserting at least a portion of an optical device within the aperture so that the optical device is positioned to receive light from the first end of the waveguide.
摘要:
An interposer for providing power, ground, and signal connections between an integrated circuit chip or chips and a substrate. The inventive interposer includes a signal core and external power/ground connection wrap. The two sections may be fabricated and tested separately, then joined together using z-connection technology. The signal core is formed from a conductive power/ground plane positioned between two dielectric layers. A patterned metal layer is formed on each dielectric layer. The two metal layers are interconnected by a through via or post process. The conductive power/ground plane functions to reduce signal cross-talk between signal lines formed on the two patterned metal layers. The power/ground wrap includes an upper substrate positioned above the signal core and a lower substrate positioned below the signal core. The upper and lower substrates of the power/ground wrap are formed from a dielectric film having a patterned metal layer on both sides, with the patterned layers connected by a through via or post process. The two power/ground wrap substrates may be formed separately or from one substrate which is bent into a desired form (e.g., a “U” shape). The two power/ground substrates are maintained in their proper alignment relative to the signal core and to each other by edge connectors which are also connected to the signal core's intermediary power/ground plane.
摘要:
An encapsulation process for flip-chip bonding chips to a substrate encapsulates solder balls on the chip in a separate encapsulation process in which the chip is coated with encapsulation layer and then a portion of the encapsulation layer is removed to expose a portion of the solder balls.
摘要:
Several inventive features for increasing the yield of substrate capacitors are disclosed. The inventive features relating to selective placement of insulating layers and patches around selected areas of the capacitor's main dielectric layer. These insulating layers and defects prevent certain manufacturing processing steps from creating pin-hole defects in the main dielectric layer. The inventive features are suitable for any type of material for the main dielectric layer, and are particularly suited to anodized dielectric layers.
摘要:
An interposer for providing power, ground, and signal connections between an integrated circuit chip or chips and a substrate. The interposer includes a signal core and external power/ground connection wrap. The two sections may be fabricated and tested separately, then joined together using z-connection technology. The signal core is a dielectric film with patterned metal on both sides. The two metal layers are interconnected by a through via or post process. The power/ground wrap includes an upper substrate positioned above the signal core and a lower substrate positioned below the signal core. The upper and lower substrates of the power/ground wrap are formed from a dielectric film having a patterned metal layer on both sides connected by a through via or post process. The upper power/ground wrap substrate, signal core, and lower power/ground substrate are interconnected as desired using z-connection technology (e.g., solder or conductive ink). The power/ground layers on the upper substrate can be connected to the power/ground layers on the lower substrate by suitable edge connectors. With an integrated circuit chip or chips connected to the upper layer of the top substrate of the power/ground wrap and a printed circuit board or other mounting substrate connected to the bottom layer of the lower substrate of the wrap, the inventive interposer provides a set of high density and electrically isolated signal, power, and ground interconnections.