Abstract:
A semiconductor device includes: at least one semiconductor element having electrode terminals; a metal plate supporting the semiconductor element; and a wiring board covering the semiconductor element and including a plurality of insulating layers and wiring layers alternately stacked and external connection terminals on a surface, the wiring layers being electrically connected to each other by vias. The electrode terminals and the external connection terminals are electrically connected via at least one of the wiring layers and the vias. At least one of the electrode terminals, the is wiring layers, and the vias is electrically connected to the metal plate.
Abstract:
Provided is a connecting part for a semiconductor device including a semiconductor element, a frame, and a connecting part which connects the semiconductor element and the frame to each other, in which an interface between the connecting part and the semiconductor element and an interface between the connecting part and the frame respectively have the area of Al oxide film which is more than 0% and less than 5% of entire area of the respective interfaces. The connecting part has an Al-based layer and first and second Zn-based layers on main surfaces of the Al-based layer, a thickness ratio of the Al-based layer relative to the Zn-based layers being less than 0.59.
Abstract:
The present invention relates to a film for flip chip type semiconductor back surface, which is to be disposed on the back surface of a semiconductor element to be flip chip-connected onto an adherend, the film containing a resin and a thermoconductive filler, in which the content of the thermoconductive filler is at least 50% by volume of the film, and the thermoconductive filler has an average particle size relative to the thickness of the film of at most 30% and has a maximum particle size relative to the thickness of the film of at most 80%.
Abstract:
Electrostatic transfer head array assemblies and methods of transferring and bonding an array of micro devices to a receiving substrate are described. In an embodiment, a method includes picking up an array of micro devices from a carrier substrate with an electrostatic transfer head assembly supporting an array of electrostatic transfer heads, contacting a receiving substrate with the array of micro devices, transferring energy from the electrostatic transfer head assembly to bond the array of micro devices to the receiving substrate, and releasing the array of micro devices onto the receiving substrate.
Abstract:
Solder bumps of uniform height are provided on a substrate through the use of injection molded solder. Copper pillars or ball limiting metallurgy are formed over I/O pads within the channels of a patterned layer of photoresist. Solder is injected over the pillars or BLM, filling the channels. The solder, which does not contain flux, is allowed to solidify. It forms a plurality of solder structures (bumps) of equal heights. Solder injection and solidification are preferably carried out in a nitrogen environment or a forming gas environment. Molten solder can be injected in channels formed in round wafers without spillage using a carrier assembly that accommodates such wafers and a fill head.
Abstract:
A power recovery system includes a transmission line that is coupled to transfer an RF signal received via an antenna. The RF signal generates a partial standing wave in the transmission line and the transmission line has at least one standing wave anti-node. A power recovery circuit converts an anti-node signal from the at least one standing wave anti-node to a power signal.
Abstract:
There is provided a method for producing a semiconductor device, capable of suppressing generation of voids at an interface between a semiconductor element and an under-fill sheet to produce a semiconductor device with high reliability. The method includes providing a sealing sheet having a support and an under-fill material laminated on the support; thermally pressure-bonding a circuit surface of a semiconductor wafer, on which a connection member is formed, and the under-fill material of the sealing sheet under conditions of a reduced-pressure atmosphere of 10000 Pa or less, a bonding pressure of 0.2 MPa or more and a heat pressure-bonding temperature of 40° C. or higher; dicing the semiconductor wafer to form a semiconductor element with the under-fill material; and electrically connecting the semiconductor element and the adherend through the connection member while filling a space between the adherend and the semiconductor element using the under-fill material.
Abstract:
A semiconductor package including a conductive clip preferably in the shape of a can, a semiconductor die, and a conductive stack interposed between the die and the interior of the can which includes a conductive platform and a conductive adhesive body.
Abstract:
The reliability of a semiconductor device is prevented from being reduced. A planar shape of a sealing body is comprised of a quadrangle having a pair of first sides, and a pair of second sides crossing with the first sides. Further, it has a die pad, a controller chip (first semiconductor chip) and a sensor chip (second semiconductor chip) mounted over the die pad, and a plurality of leads arranged along the first sides of the sealing body. The controller chip and the leads are electrically coupled to each other via wires (first wires), and the sensor chip and the controller chip are electrically coupled to each other via wires (second wires). Herein, the die pad is supported by a plurality of suspending leads formed integrally with the die pad and extending from the die pad toward the first sides of the sealing body. Each of the suspending leads has an offset part.
Abstract:
A 3N copper wire with trace additions for bonding in microelectronics contains 3N copper and one or more corrosion resistance addition materials selected from Ag, Ni, Pd, Au, Pt, and Cr. A total concentration of the corrosion resistance addition materials is between about 90 wt. ppm and about 980 wt. ppm.