Abstract:
An interconnect for a semiconductor die includes integrally formed test structures for evaluating various electrical characteristics of the interconnect. The test structures can include Kelvin structures, van der Pauw structures, resistors, capacitors, contact chains, via chains, serpentine test structures, and antenna test structures. Among the electrical characteristics that can be evaluated are the resistivity of contact member, conductor and substrate components of the interconnect, contact resistance between the contact members and conductors and capacitance of the contact members and conductors with respect to the substrate.
Abstract:
A method and apparatus for testing unpackaged semiconductor dice includes a mother board and a plurality of interconnects mounted on the mother board and adapted to establish a temporary electrical connection with the dice. The interconnects can be formed with a silicon substrate and raised contact members for contacting the bond pads of a die. Alternately the interconnects can be formed with micro bump contact members mounted on an insulating film. The mother board allows each die to be tested separately for speed and functionality and to also be burn-in tested in parallel using standard burn-in ovens. In an alternate embodiment testing is performed using a mother board/daughter board arrangement. Each daughter board includes interconnects that allow the dice to be tested individually for speed and functionality. Multipule daughter boards can then be mounted to the mother board for burn-in testing using standard burn-in ovens.
Abstract:
Optical alignment techniques, such as those used in "flip chip" bonding, are used to establish ohmic contact with the die by means of raised portions on contact members. This permits accurate alignment with a temporary die fixture in order to test the die. The tested die can then be qualified under a known good die program as having an acceptable degree of reliability. This permits the die to be characterized prior to assembly, so that the die may then be transferred in an unpackaged form. The ohmic contact is preferably established by applying a compression force applied to the die against the substrate results in a limited penetration of the contact member into the bondpads. The arrangement may be used for establishing electrical contact and with a burn-in oven and with a discrete die tester.
Abstract:
A method and apparatus for testing a singularized semiconductor die prior to packaging the die, thereby allowing for the packaging or other use of only known good die. The apparatus employs a housing of ceramic or other workable material. Contact pads on the interior of the package are coupled to exterior leads with conductive traces. The back side of a semiconductor die to be tested is removably mounted to a lid, and the bond pads on the die are aligned with the contact pads on the interior of the package. The lid is attached to the package thereby electrically coupling the contact pads with the bond pads on the die. Since the package has conventional exterior form and function the package is operational as a functioning device.
Abstract:
An inspection station punch block apparatus for removing a portion of an integrated circuit die lead from a lead frame. The missing lead is used to mark a defective die and is lataer monitored by a scanning means which causes rejection of the die from the lead frame. A method of carrying out this operation is also disclosed.
Abstract:
Methods and apparatuses for transferring heat from stacked microfeature devices are disclosed herein. In one embodiment, a microfeature device assembly comprises a support member having terminals and a first microelectronic die having first external contacts carried by the support member. The first external contacts are operatively coupled to the terminals on the support member. The assembly also includes a second microelectronic die having integrated circuitry and second external contacts electrically coupled to the first external contacts. The first die is between the support member and the second die. The assembly can further include a heat transfer unit between the first die and the second die. The heat transfer unit includes a first heat transfer portion, a second heat transfer portion, and a gap between the first and second heat transfer portions such that the first external contacts and the second external contacts are aligned with the gap.
Abstract:
A solid state light (“SSL”), a solid state emitter (“SSE”), and methods of manufacturing SSLs and SSEs. In one embodiment, an SSL comprises a packaging substrate having an electrical contact and a light emitting structure having a front side and a back side. The back side of the light emitting structure is superimposed with the electrical contact of the packaging substrate. The SSL can further include a temperature control element aligned with the light emitting structure and the electrical contact of the packaging substrate.
Abstract:
A semiconductor module system includes a module substrate and first and second semiconductor components stacked on the module substrate. The stacked semiconductor components include through wire interconnects that form an internal signal transmission system for the module system. Each through wire interconnect includes a via, a wire in the via and first and second contacts on the wire.
Abstract:
A semiconductor component includes a semiconductor substrate having at least one conductive interconnect on the backside thereof bonded to an inner surface of a substrate contact. A stacked semiconductor component includes multiple semiconductor components in a stacked array having bonded connections between conductive interconnects on adjacent components. An image sensor semiconductor component includes a semiconductor substrate having light detecting elements on the circuit side, and conductive interconnects on the backside.
Abstract:
A method for fabricating a semiconductor component with an encapsulated through wire interconnect includes the steps of providing a substrate having a first side, a second side and a substrate contact; forming a via in the substrate contact and the substrate to the second side; placing a wire in the via; forming a first contact on the wire proximate to the first side and a second contact on the wire proximate to the second side; and forming a polymer layer on the first side leaving the first contact exposed. The polymer layer can be formed using a film assisted molding process including the steps of: forming a mold film on tip portions of the bonding members, molding the polymer layer, and then removing the mold film to expose the tip portions of the bonding members. The through wire interconnect provides a multi level interconnect having contacts on opposing sides of the semiconductor substrate.