Abstract:
A method for forming a copper damascene feature including providing a semiconductor process wafer including at least one via opening formed to extend through a thickness of at least one dielectric insulating layer and an overlying trench line opening encompassing the at least one via opening to form a dual damascene opening; etching through an etch stop layer at the at least one via opening bottom portion to expose an underlying copper area; carrying out a sub-atmospheric DEGAS process with simultaneous heating of the process wafer in a hydrogen containing ambient; carrying out an in-situ sputter-clean process; and, forming a barrier layer in-situ to line the dual damascene opening.
Abstract:
A flux residue cleaning system includes first and second immersion chambers, first and second spray chambers, and a drying chamber. The first immersion chamber softens an outer region of a flux residue formed around microbumps interposed between a wafer and a die when the wafer is immersed in a first chemical. The first spray chamber removes the outer region of the flux residue when the wafer is impinged upon by a first chemical spray in order to expose an inner region of the flux residue. The second immersion chamber softens the inner region of the flux residue when the wafer is immersed in a second chemical. The second spray chamber removes the inner region of the flux residue when the wafer is impinged upon by a second chemical spray in order to clean the wafer to a predetermined standard. The drying chamber dries the wafer.
Abstract:
Packaging methods, material dispensing methods and apparatuses, and automatic measurement systems are disclosed. In one embodiment, a method of packaging semiconductor devices includes coupling a second die to a top surface of a first die, dispensing a first amount of underfill material between the first die and the second die, and capturing an image of the underfill material. Based on the image captured, a second amount or no additional amount of underfill material is dispensed between the first die and the second die.
Abstract:
The embodiments described provide apparatus and methods for bonding wafers to carriers with the surface contours of plates facing the substrates or carriers are modified either by re-shaping, by using height adjusters, by adding shim(s), or by zoned temperature control. The modified surface contours of such plates compensate the effects that may cause the non-planarity of bonded substrates.
Abstract:
Semiconductor device packaging methods and structures thereof are disclosed. In one embodiment, a method of packaging semiconductor devices includes coupling a plurality of second dies to a top surface of a first die, and determining a distance between each of the plurality of second dies and the first die. The method also includes determining an amount of underfill material to dispose between the first die and each of the plurality of second dies based on the determined distance, and disposing the determined amount of the underfill material under each of the plurality of second dies.
Abstract:
The mechanisms of forming a molding compound on a semiconductor device substrate to enable fan-out structures in wafer-level packaging (WLP) are provided. The mechanisms involve covering portions of surfaces of an insulating layer surrounding a contact pad. The mechanisms improve reliability of the package and process control of the packaging process. The mechanisms also reduce the risk of interfacial delamination, and excessive outgassing of the insulating layer during subsequent processing. The mechanisms further improve planarization end-point. By utilizing a protective layer between the contact pad and the insulating layer, copper out-diffusion can be reduced and the adhesion between the contact pad and the insulating layer may also be improved.
Abstract:
A package structure includes a first substrate bonded to a second substrate by Connecting metal pillars on the first substrate to connectors on the second substrate. A first metal pillar is formed overlying and electrically connected to a metal pad on a first region of the first substrate, and a second metal pillar is formed overlying a passivation layer in a second region of the first substrate. A first solder joint region is formed between metal pillar and the first connector, and a second solder joint region is formed between the second metal pillar and the second connector. The thickness of the first metal pillar is greater than the thickness of the second metal pillar.
Abstract:
A surface metal wiring structure for a substrate includes one or more functional μbumps formed of a first metal and an electrical test pad formed of a second metal for receiving an electrical test probe and electrically connected to the one or more functional μbumps. The surface metal wiring structure also includes a plurality of sacrificial μbumps formed of the first metal that are electrically connected to the electrical test pads, where the sacrificial μbumps are positioned closer to the electrical test pad than the one or more functional μbumps.
Abstract:
A solder bump structure for a ball grid array (BGA) includes at least one under bump metal (UBM) layer and a solder bump formed over the at least one UBM layer. The solder bump has a bump width and a bump height and the ratio of the bump height over the bump width is less than 1.
Abstract:
A system and method are disclosed for providing a through silicon via (TSV) with a barrier pad deposited below the top surface of the TSV, the top surface having reduced topographic variations. A bottom TSV pad is deposited into a via and then polished so the top surface is below the substrate top surface. A barrier pad is then deposited in the via, and a top TSV pad deposited on the barrier pad. The top TSV barrier pad is polished to bring the top surface of the top TSV pad about level with the substrate. The barrier pad may be less than about 1 microns thick, and the top TSV pad may be less than about 6 microns thick. The barrier pad may be a dissimilar metal from the top and bottom TSV pads, and may be selected from a group comprising titanium, tantalum, cobalt, nickel and the like.