Abstract:
Microelectronic imagers and methods for packaging microelectronic imagers are disclosed herein. In one embodiment, a microelectronic imaging unit can include a microelectronic die, an image sensor, an integrated circuit electrically coupled to the image sensor, and a bond-pad electrically coupled to the integrated circuit. An electrically conductive through-wafer interconnect extends through the die and is in contact with the bond-pad. The interconnect can include a passage extending completely through the substrate and the bond-pad with conductive fill material at least partially disposed in the passage. An electrically conductive support member is carried by and projects from the bond-pad. A cover over the image sensor is coupled to the support member.
Abstract:
A compliant contact pin assembly, a contactor card, a testing system and methods for making and testing are provided. A compliant contact pin assembly includes a contact pin formed from a portion of a substrate with the contact pin compliantly held suspended within the substrate by a compliant coupling structure. The suspension within the substrate results in a compliant deflection orthogonal to the plane of the substrate. The contact pin assembly is formed by generally thinning the substrate around the contact pin location and then specifically thinning the substrate immediately around the contact pin location for forming a void. The contact pin is compliantly coupled, in one embodiment by compliant coupling material and in another embodiment by compliantly flexible portions of the substrate.
Abstract:
A method for fabricating semiconductor components and interconnects includes the steps of providing a substrate, such as a semiconductor die, forming external contacts on opposing sides of the substrate by laser drilling vias through the substrate, and forming conductive members in the vias. The conductive members include enlarged terminal portions that are covered with a non-oxidizing metal. The method can be used to fabricate stackable semiconductor packages having integrated circuits in electrical communication with the external contacts. The method can also be used to fabricate interconnects for electrically engaging packages, dice and wafers for testing or for constructing electronic assemblies.
Abstract:
A method for fabricating semiconductor components is performed using a laser scanner and a laser imaging process. A substrate, such as a semiconductor wafer, containing multiple semiconductor components, such as dice or packages, is provided. The components include integrated circuits, and component contacts in electrical communication with the integrated circuits. Initially, the components are tested to identify and locate good components and defective components on the substrate. Using data from the testing step and the laser scanner, patterns of conductors are then formed to either repair the defective components, to electrically isolate the defective components for burn-in, or to form component clusters containing only the good components. Alternately, using data from the testing step and the laser scanner, a matching test board can be fabricated, and used to electrically engage the good components, while the defective components remain isolated.
Abstract:
A semiconductor component includes a semiconductor substrate having a substrate contact, and a through wire interconnect (TWI) bonded to the substrate contact. The through wire interconnect (TWI) includes a via through the substrate contact and the substrate, a wire in the via bonded to the substrate contact, and a contact on the wire. A stacked semiconductor component includes the semiconductor substrate, and a second semiconductor substrate stacked on the substrate and bonded to a through wire interconnect on the substrate. A method for fabricating a semiconductor component with a through wire interconnect includes the steps of providing a semiconductor substrate with a substrate contact, forming a via through the substrate contact and part way through the substrate, placing the wire in the via, bonding the wire to the substrate contact, and then thinning the substrate from a second side to expose a contact on the wire. A system for fabricating the semiconductor component includes a bonding capillary configured to place the wire in the via, and to form a bonded connection between the wire and the substrate contact.
Abstract:
Methods and apparatuses for releasably attaching support members to microfeature workpieces to support members are disclosed herein. In one embodiment, for example, a method for processing a microfeature workpiece including a plurality of microelectronic dies comprises forming discrete blocks of material at a first side of a support member. The blocks are arranged on the support member in a predetermined pattern. The method also includes depositing an adhesive material into gaps between the individual blocks of material and placing a first side of the workpiece in contact with the adhesive material and/or the blocks. The method further includes cutting through a second side of the workpiece to singulate the dies and to expose at least a portion of the adhesive material in the gaps. The method then includes removing at least approximately all the adhesive material from the support member and/or the workpiece with a solvent.
Abstract:
A method for fabricating a semiconductor component with a through wire interconnect includes the step of providing a substrate having a circuit side, a back side, and a through via. The method also includes the steps of: threading a wire through the via, forming a contact on the wire on the back side, forming a bonded contact on the wire on the circuit side, and then severing the wire from the bonded contact. The through wire interconnect includes the wire in the via, the contact on the back side and the bonded contact on the circuit side. The contact on the back side, and the bonded contact on the circuit side, permit multiple components to be stacked with electrical connections between adjacent components. A system for performing the method includes the substrate with the via, and a wire bonder having a bonding capillary configured to thread the wire through the via, and form the contact and the bonded contact. The semiconductor component can be used to form chip scale components, wafer scale components, stacked components, or interconnect components for electrically engaging or testing other semiconductor components.
Abstract:
Microelectronic imager assemblies comprising a workpiece including a substrate and a plurality of imaging dies on and/or in the substrate. The substrate includes a front side and a back side, and the imaging dies comprise imaging sensors at the front side of the substrate and external contacts operatively coupled to the image sensors. The microelectronic imager assembly further comprises optics supports superimposed relative to the imaging dies. The optics supports can be directly on the substrate or on a cover over the substrate. Individual optics supports can have (a) an opening aligned with one of the image sensors, and (b) a bearing element at a reference distance from the image sensor. The microelectronic imager assembly can further include optical devices mounted or otherwise carried by the optics supports.
Abstract:
A semiconductor component includes a semiconductor substrate having a substrate contact, and a through wire interconnect (TWI) bonded to the substrate contact. The through wire interconnect (TWI) includes a via through the substrate contact and the substrate, a wire in the via bonded to the substrate contact, and a contact on the wire. A stacked semiconductor component includes the semiconductor substrate, and a second semiconductor substrate stacked on the substrate and bonded to a through wire interconnect on the substrate. A method for fabricating a semiconductor component with a through wire interconnect includes the steps of providing a semiconductor substrate with a substrate contact, forming a via through the substrate contact and part way through the substrate, placing the wire in the via, bonding the wire to the substrate contact, and then thinning the substrate from a second side to expose a contact on the wire. A system for fabricating the semiconductor component includes a bonding capillary configured to place the wire in the via, and to form a bonded connection between the wire and the substrate contact.