Abstract:
Microelectronic devices, methods for packaging microelectronic devices, and methods for forming interconnects in microelectronic devices are disclosed herein. In one embodiment, a method comprises providing a microelectronic substrate having a front side and a backside. The substrate has a microelectronic die including an integrated circuit and a terminal operatively coupled to the integrated circuit. The method also includes forming a passage at least partially through the substrate and having an opening at the front side and/or backside of the substrate. The method further includes sealing the opening with a conductive cap that closes one end of the passage while another end of the passage remains open. The method then includes filling the passage with a conductive material.
Abstract:
A compliant contact pin assembly and a contactor card are provided. A compliant contact pin assembly includes a contact pin formed from a portion of a substrate with the contact pin compliantly held suspended within the substrate by a compliant coupling structure. The suspension within the substrate results in a compliant deflection orthogonal to the plane of the substrate. The contact pin assembly is formed by generally thinning the substrate around the contact pin location and then specifically thinning the substrate immediately around the contact pin location for forming a void. The contact pin is compliantly coupled, in one embodiment by compliant coupling material, and in another embodiment by compliantly flexible portions of the substrate.
Abstract:
A compliant contact pin assembly method for making is provided. A compliant contact pin assembly includes a contact pin formed from a portion of a substrate with the contact pin compliantly held suspended within the substrate by a compliant coupling structure. The suspension within the substrate results in a compliant deflection orthogonal to the plane of the substrate. The contact pin assembly is formed by generally thinning the substrate around the contact pin location and then specifically thinning the substrate immediately around the contact pin location for forming a void. The contact pin is compliantly coupled, in one embodiment by compliant coupling material, and in another embodiment by compliantly flexible portions of the substrate.
Abstract:
A spring element used in a temporary package for testing semiconductors is provided. The spring element is compressed so as to press the semiconductor, either in the form of a bare semiconductor die or as part of a package, against an interconnect structure. The spring element is configured so that it provides sufficient pressure to keep the contacts on the semiconductor in electrical contact with the interconnect structure. Material is added and/or removed from the spring element so that it has the desired modulus of elasticity. The shape of the spring element may also be varied to change the modulus of elasticity, the spring constant, and the force transfer capabilities of the spring element.
Abstract:
A test carrier for testing bumped semiconductor components such dice, chip scale packages, BGA devices, and wafers is provided. The test carrier includes a base for retaining one or more components and contact members for making temporary electrical connections with contact balls on the components (e.g., solder balls). The test carrier also includes terminal contacts formed as hard metal balls, as hard metal balls coated with a non-oxidizing metal layer, or as glass, ceramic or plastic members coated with a conductive material. The contact members on the base protect the contact balls on the components from deformation during testing and handling. The terminal contacts on the test carrier are configured for multiple uses in a production environment without deformation. Also provided is a calibration carrier for calibrating semiconductor test systems for bumped components, and a cleaning carrier for cleaning test sockets for bumped components. The calibration carrier can include on board evaluation circuitry for evaluating electrical characteristics of a test system, such as contact resistances between electrical connectors of a test socket and terminal contacts on the calibration carrier. The cleaning carrier includes terminal contacts formed of a solder wettable material configured to attract solder contaminants in test sockets.
Abstract:
The present invention includes an electronic device workpiece processing apparatus and method of communicating signals within an electronic device workpiece processing apparatus. One embodiment of s an electronic device workpiece processing apparatus includes a chuck including a surface, an electrical coupling adjacent the surface, and electrical interconnect configured to connect with the electrical coupling of the chuck and conduct a signal within the chuck; an intermediate member having a first surface and a second surface and the intermediate member including: an electrical coupling adjacent the first surface and configured to couple with the electrical coupling of the chuck; an electrical coupling adjacent the second surface; and an electrical interconnect configured to connect the electrical coupling adjacent the first surface and the electrical coupling adjacent the second surface; and an electronic device workpiece configured to couple with the second surface of the intermediate member, the electronic device workpiece including a sensor and an electrical coupling configured to provide electrical connection of the sensor with the electrical coupling of the second surface of the intermediate member.
Abstract:
A method and apparatus for testing unpackaged semiconductor dice is provided. The method includes forming an interconnect-alignment fixture for use in a test apparatus adapted to hold and apply test signals to the die during burn-in and full functionality testing. The interconnect-alignment fixture includes an interconnect plate formed out of a material such as silicon. The interconnect plate includes raised contact members covered with a conductive layer and adapted to penetrate contact locations on the die to a limited penetration depth. The interconnect-alignment fixture also includes an alignment plate formed with etched alignment openings for aligning contact locations on the die with the contact members on the interconnect plate during the test procedure. In addition, the alignment plate includes access openings for establishing an electrical connection to the contact members on the interconnect plate using wire bonding or mechanical electrical connectors. The interconnect plate and alignment plate are fabricated at the wafer level and then singulated using semiconductor circuit fabrication techniques.
Abstract:
A semiconductor component includes a semiconductor substrate having a substrate contact, and a through wire interconnect (TWI) attached to the substrate contact. The through wire interconnect provides a multi level interconnect having contacts on opposing first and second sides of the semiconductor substrate. The through wire interconnect (TWI) includes a via through the substrate contact and the substrate, a wire in the via having a bonded connection with the substrate contact, a first contact on the wire proximate to the first side, and a second contact on the wire proximate to the second side. The through wire interconnect (TWI) also includes a polymer layer which partially encapsulates the through wire interconnect (TWI) while leaving the first contact exposed. The semiconductor component can be used to fabricate stacked-systems, module systems and test systems. A method for fabricating the semiconductor component can include a film assisted molding process for forming the polymer layer.
Abstract:
A contactor card assembly for use with a semiconductor substrate. An upper keeper plate and a lower keeper plate each include a number of conductive pins extending therethrough, situated in vias filled with an elastomeric material and extending beyond the keeper plates to contact a substrate for testing. An intermediate keeper plate is situated between the upper and lower keeper plates and includes conductive pivot bars in channels filled with elastomeric material. Each conductive pin contacts a pivot bar on one side thereof to electrically communicate with a corresponding pin on the opposite side. Under compression, variations in the height of contacts on the substrate under test are adjusted for by the movement of the pins and pivoting of the pivot bar in the elastomeric material. Methods and process for creating the keeper plates and semiconductor and testing assemblies are also included in the present invention.
Abstract:
A method for fabricating a semiconductor component with a through wire interconnect includes the step of providing a substrate having a circuit side, a back side, and a through via. The method also includes the steps of: threading a wire through the via, forming a contact on the wire on the back side, forming a bonded contact on the wire on the circuit side, and then severing the wire from the bonded contact. The through wire interconnect includes the wire in the via, the contact on the back side and the bonded contact on the circuit side. The contact on the back side, and the bonded contact on the circuit side, permit multiple components to be stacked with electrical connections between adjacent components. A system for performing the method includes the substrate with the via, and a wire bonder having a bonding capillary configured to thread the wire through the via, and form the contact and the bonded contact. The semiconductor component can be used to form chip scale components, wafer scale components, stacked components, or interconnect components for electrically engaging or testing other semiconductor components.