摘要:
Structures, methods and materials for making multilayer circuit substrates are disclosed. The structures include bumped structures or microencapsulated conductive particles suitable for use in a lamination process to make a multilayer printed circuit substrate.
摘要:
Bumped semiconductor substrates and methods for forming bumped semiconductor substrates are disclosed. The bumped semiconductor substrates have a polymeric layer, which can serve as a passivation layer for chips derived from the semiconductor substrate.
摘要:
A method for producing a circuit board having an integrated electronic component comprising providing a circuit board substrate having a first substrate surface and a second substrate surface, securing an integrated electronic component to the first substrate surface, and disposing a first dielectric layer on the first substrate surface and over the first integrated electronic component. The method additionally includes disposing a metallic layer on the first dielectric layer to produce an integrated electronic component assembly, producing in the integrated electronic component assembly at least one via having a metal lining in contact with the metallic layer, and disposing a second dielectric layer over the via and over the metallic layer. At least one metal-lined opening is formed in the second dielectric layer and in the first dielectric layer to expose at least part of the integrated electronic component, and to couple the metal lining of the opening to the first integrated electronic component to produce a circuit board having at least one integrated electronic component. A multi-layer printed circuit board having at least one prefabricated, integrated electronic component.
摘要:
Multilayer circuit lamination methods and circuit layer structures are disclosed which enable one to manufacture high-density multichip module boards and the like at lower cost, with higher yield, with higher signal densities, and with fewer processing steps.
摘要:
A method for deplating defective capacitors comprising forming a plurality of capacitors on a semiconductor substrate, forming a plurality of metal contacts on the plurality of capacitors, and depositing a layer of photoresist on the semiconductor substrate. The photoresist layer is patterned so that the plurality of metal contacts are exposed, which are then contacted with an electrically conductive solution. The metal contacts, which are disposed over defective capacitors, are subsequently deplated. A method for forming a multi-chip module comprising forming a thin-film polymeric interconnect structure having a pair of sides, one of which is disposed on a silicon substrate having active or passive devices and the other of which has a computer chip mounted thereon. A multi-chip module formed by the method.
摘要:
A method for joining large area semiconductor substrates, a liquid thermoset polymer. Two large area substrates, such as wafers or circuit boards (e.g., rigid or flexible), can be joined together by dispensing a liquid polymer inwardly from the edges of the semiconductor substrates. The substrates can then be pressed together so that the liquid thermoset flows in an outwardly direction ward the edges of the semiconductor substrates. Conducting surfaces on the first and second substrates may contact each other after pressing the liquid thermoset polymer. The liquid thermoset polymer in the formed structure may then be cured to a hardened state. The liquid thermoset polymer preferable has a low viscosity, low levels of ionic contaminants, good adhesion to the substrates, low moisture absorbing properties and favorable thermal expansion properties.
摘要:
An optical apparatus including an optical substrate having an embedded waveguide and an optical device adapted to receive light transmitted from an end of the waveguide. The optical apparatus includes a coupling structure for coupling the optical device to the substrate. The coupling structure has a thin metallic layer with an aperture. At least a portion of the optical device is disposed in the aperture. A method for making an optical apparatus comprising forming an optical substrate having a waveguide embedded therein; depositing a metal layer over an end of the waveguide; and depositing a polymeric layer over the metal layer. An aperture is formed in the metal layer and in the polymeric layer by removing a portion of the metal layer and a portion of the polymeric layer disposed over the end of the waveguide. The method for making an optical apparatus also comprises inserting at least a portion of an optical device within the aperture so that the optical device is positioned to receive light from the first end of the waveguide.
摘要:
Printed circuit substrates and electrical assemblies including a conductive composition are disclosed. The printed circuit substrate and the electrical assembly embodiments comprise a first conducting region and a second conducting region. A dielectric layer is disposed between the first and second conducting regions. An aperture is disposed in the dielectric layer and a via structure including the conductive composition is disposed in the aperture. The conductive composition is preferably in a cured state and electrically communicates with the first and second conducting regions. In preferred embodiments, the conductive composition comprises conductive particles in an amount of at least about 75 wt. % based on the weight of the composition. At least 50% by weight of the conductive particles have melting points of less than about 400.degree. C. The composition further includes a carrier including an epoxy-functional resin in an amount of at least about 50 wt. % based on the weight of the carrier, and a fluxing agent in an amount of at least about 0.1 wt % based on the weight of the carrier. The epoxy functional resin can have a viscosity of less than about 1000 centipoise at 25.degree. C.
摘要:
A high-strength Pb-free solder alloy, based on the Sn--Ag--Zn system, is disclosed. The Pb-free solder alloy contains, in weight percent, 0.2-0.6% Zn, 1-6% Ag, one or both 0.2-0.6% In and 0.2-0.6% Bi, and the balance Sn. The addition of Zn significantly improves the mechanical strength and creep resistance of e.g., Sn--3.5% Ag eutectic solder while maintaining substantially the same level of ductility. The increase in strength is as much as 48% over that of the Sn--3.5% Ag alloy. This strengthening from the Zn additions is attributed to a uniform solidification structure and a substantial refinement of the precipitates in the alloy. Essentially all of the added Zn resides in the more corrosion-resistant, Ag-based, intermetallic precipitates, leaving the Sn-rich matrix primarily free of Zn in solid solution.