Abstract:
An apparatus relating generally to a substrate is disclosed. In this apparatus, a first metal layer is on the substrate. The first metal layer has an opening. The opening of the first metal layer has a bottom and one or more sides extending from the bottom. A second metal layer is on the first metal layer. The first metal layer and the second metal layer provide a bowl-shaped structure. An inner surface of the bowl-shaped structure is defined responsive to the opening of the first metal layer and the second metal layer thereon. The opening of the bowl-shaped structure is configured to receive and at least partially retain a bonding material during a reflow process.
Abstract:
A microelectronic package may include a substrate having first and second regions, a first surface and a second surface remote from the first surface; at least one microelectronic element overlying the first surface within the first region; electrically conductive elements at the first surface within the second region; a support structure having a third surface and a fourth surface remote from the third surface and overlying the first surface within the second region in which the third surface faces the first surface, second and third electrically conductive elements exposed respectively at the third and fourth surfaces and electrically connected to the conductive elements at the first surface in the first region; and wire bonds defining edge surfaces and having bases electrically connected through ones of the third conductive elements to respective ones of the second conductive elements and ends remote from the support structure and the bases.
Abstract:
An apparatus relates generally to a three-dimensional stacked integrated circuit. In such an apparatus, the three-dimensional stacked integrated circuit has at least a first die and a second die interconnected to one another using die-to-die interconnects. A substrate of the first die has at least one thermal via structure extending from a lower surface of the substrate toward a well of the substrate without extending to the well and without extending through the substrate. A first end of the at least one thermal via structure is at least sufficiently proximate to the well of the substrate for conduction of heat away therefrom. The substrate has at least one through substrate via structure extending from the lower surface of the substrate to an upper surface of the substrate. A second end of the at least one thermal via structure is coupled to at least one through die via structure of the second die for thermal conductivity.
Abstract:
Stacked dies (110) are encapsulated in an interposer's cavity (304) by multiple encapsulant layers (524) formed of moldable material. Conductive paths (520, 623) connect the dies to the cavity's bottom all (304B) and, through TSVs passing through the bottom wall, to a conductor below the interposer. The conductive paths can be formed in segments each of which is formed in a through-hole (514) in a respective encapsulant layer. Each segment can be formed by electroplating onto a lower segment; the electroplating current can be provided from below the interposer through the TSVs and earlier formed segments. Other features are also provided.
Abstract:
A device and method for an integrated device includes a first redistribution layer comprising one or more first conductors, one or more first dies mounted to a first surface of the first redistribution layer and electrically coupled to the first conductors, one or more first posts having first ends attached to the first dies and second ends opposite the first ends, one or more second posts having third ends attached to the first surface of the first redistribution layer and fourth ends opposite the third ends, and a second redistribution layer comprising one or more second conductors, the second redistribution layer being attached to the second ends of the first posts and to the fourth ends of the second posts. In some embodiments, the integrated device further includes a heat spreader mounted to a second surface of the first redistribution layer. The second surface is opposite the first surface.
Abstract:
Interposers and methods of making the same are disclosed herein. In one embodiment, an interposer includes a region having first and second oppositely facing surfaces and a plurality of pores, each pore extending in a first direction from the first surface towards the second surface, wherein alumina extends along a wall of each pore; a plurality of electrically conductive connection elements extending in the first direction, consisting essentially of aluminum and being electrically isolated from one another by at least the alumina; a first conductive path provided at the first surface for connection with a first component external to the interposer; and a second conductive path provided at the second surface for connection with a second component external to the interposer, wherein the first and second conductive paths are electrically connected through at least some of the connection elements.
Abstract:
Apparatuses relating generally to a substrate are disclosed. In such an apparatus, first wire bond wires (“first wires”) extend from a surface of the substrate. Second wire bond wires (“second wires”) extend from the surface of the substrate. The first wires and the second wires are external to the substrate. The first wires are disposed at least partially within the second wires. The first wires are of a first height. The second wires are of a second height greater than the first height for coupling of at least one electronic component to the first wires at least partially disposed within the second wires.
Abstract:
A method for making an integrated circuit package includes providing a handle wafer having a first region defining a cavity. A capacitor is formed in the first region. The capacitor has a pair of electrodes, each coupled to one of a pair of conductive pads, at least one of which is disposed on a lower surface of the handle wafer. An interposer having an upper surface with a conductive pad and at least one semiconductor die disposed thereon is also provided. The die has an integrated circuit that is electroconductively coupled to a redistribution layer (RDL) of the interposer. The lower surface of the handle wafer is bonded to the upper surface of the interposer such that the die is disposed below or within the cavity and the electroconductive pad of the handle wafer is bonded to the electroconductive pad of the interposer in a metal-to-metal bond.
Abstract:
Stacked dies (110) are encapsulated in an interposer's cavity (304) by multiple encapsulant layers (524) formed of moldable material. Conductive paths (520, 623) connect the dies to the cavity's bottom all (304B) and, through TSVs passing through the bottom wall, to a conductor below the interposer. The conductive paths can be formed in segments each of which is formed in a through-hole (514) in a respective encapsulant layer. Each segment can be formed by electroplating onto a lower segment; the electroplating current can be provided from below the interposer through the TSVs and earlier formed segments. Other features are also provided.
Abstract:
An apparatus relating generally to a substrate is disclosed. In this apparatus, a first metal layer is on the substrate. The first metal layer has an opening. The opening of the first metal layer has a bottom and one or more sides extending from the bottom. A second metal layer is on the first metal layer. The first metal layer and the second metal layer provide a bowl-shaped structure. An inner surface of the bowl-shaped structure is defined responsive to the opening of the first metal layer and the second metal layer thereon. The opening of the bowl-shaped structure is configured to receive and at least partially retain a bonding material during a reflow process.