Abstract:
Provided are a semiconductor device producing method with simple production steps while preventing contamination of a bonding pad and preventing warp generation in an adherend such as a substrate, a lead frame, or a semiconductor element, thereby improving yield; an adhesive sheet used in this method; and a semiconductor device obtained by this method. The invention includes a pre-setting step of pre-setting a semiconductor element 13 to an adherend 11 through an adhesive sheet 12, and a wire bonding step of wire bonding the element 13 in the bonding temperatures range of 80 to 250° C. without performing any heating step, wherein, as the adhesive sheet 12, a sheet having a storage elastic modulus of 1 MPa or more in the temperature range of 80 to 250° C. or a storage elastic modulus of 11 MPa or more at any temperature in the temperature range before curing the sheet 12 is used.
Abstract:
The mounting height of a semiconductor device is reduced. A wiring substrate has an upper surface with multiple bonding leads formed therein and a lower surface with multiple lands formed therein. This wiring substrate is a multilayer wiring substrate and multiple wiring layers and multiple insulating layers are alternately formed on the upper surface side and on the lower surface side of the core material of the wiring substrate. The bonding leads are formed of part of the uppermost wiring layer and the lands are formed of part of the lowermost wiring layer. The insulating layers include second insulating layers containing fiber and resin and third insulating layers smaller in fiber content than the second insulating layers. The second insulating layers are formed on the upper surface side and on the lower surface side of the core material. The third insulating layers are formed on the upper surface side and on the lower surface side of the core material with the second insulating layers in-between. The uppermost wiring layer and the lowermost wiring layer are formed over the third insulating layers.
Abstract:
A method for fabricating a semiconductor component with an encapsulated through wire interconnect includes the steps of providing a substrate having a first side, a second side and a substrate contact; forming a via in the substrate contact and the substrate to the second side; placing a wire in the via; forming a first contact on the wire proximate to the first side and a second contact on the wire proximate to the second side; and forming a polymer layer on the first side leaving the first contact exposed. The polymer layer can be formed using a film assisted molding process including the steps of: forming a mold film on tip portions of the bonding members, molding the polymer layer, and then removing the mold film to expose the tip portions of the bonding members. The through wire interconnect provides a multi level interconnect having contacts on opposing sides of the semiconductor substrate.
Abstract:
An electronic device and method for production is disclosed. One embodiment provides an integrated component having a first layer which is composed of copper or a copper alloy or which contains copper or a copper alloy, and having an electrically conductive second layer, whose material differs from the material of the first layer, and a connection apparatus which is arranged on the first layer and on the second layer.
Abstract:
A method of forming a conductive bump is provided. The method includes the steps of: (1) bonding a free air ball to a bonding location using a bonding tool to form a bonded ball; (2) raising the bonding tool to a desired height, with a wire clamp open, while paying out wire continuous with the bonded ball; (3) closing the wire clamp; (4) lowering the bonding tool to a smoothing height with the wire clamp still closed; (5) smoothing an upper surface of the bonded ball, with the wire clamp still closed, using the bonding tool; and (6) raising the bonding tool, with the wire clamp still closed, to separate the bonded ball from wire engaged with the bonding tool.
Abstract:
A method of forming at least one bonding structure may be provided. A ball may be formed on the front end of a wire outside a capillary. The capillary may be moved downwardly to form a preliminary compressed ball on a first pad using the ball. The capillary may be moved upwardly to form a neck portion on the preliminary compressed ball using the preliminary compressed ball and the wire. The capillary may be moved obliquely and downwardly to form a compressed ball. The capillary may extend the wire from the compressed ball to a second pad.
Abstract:
A stacked semiconductor device includes a first semiconductor element mounted on a circuit substrate and a second semiconductor element stacked on the first semiconductor element via a spacer layer. An electrode pad of the first semiconductor element is electrically connected to a connection portion of the circuit substrate through a first metal wire. A vicinity of the end portion of the first metal wire connected to the electrode pad is in contact with an insulating protection film which covers the surface of the first semiconductor element.
Abstract:
Embodiments of the present invention provide a semiconductor package which includes: a semiconductor chip to which one end of each of a plurality of wires is connected; and a board on which the semiconductor chip is fixed, and a plurality of board wires to which the plurality of corresponding wires are connected are disposed, wherein the board includes: a first wiring pair that includes a first pair of wires in parallel with each other and first two board wires connected to the corresponding wires, one of the wires connected to one of the board wires crossing the other board wire without contact with the other board wire, and a second wiring pair that is provided adjacent to the first wiring pair and includes a second pair of wires in parallel with each other and second two board wires connected to the corresponding wires without a crossing.
Abstract:
An image pickup apparatus according to an embodiment includes: an image pickup device chip including an image pickup device formed on a first principal surface thereof and an external terminal for the image pickup device formed on a second principal surface thereof; a wiring board including a distal end portion including a connection pad, a flexure portion flexed at an angle of no less than 90 degrees, and an extending portion, the wiring board including a wiring layer extending from the distal end portion to the extending portion via the flexure portion, the wiring board being kept within a space immediately above the second principal surface of the image pickup device chip; a bonding layer that joins the second principal surface of the image pickup device chip and the distal end portion of the wiring board; and a bonding wire that electrically connects the external terminal and the connection pad.
Abstract:
A dicing die-bonding film in which the adhesive properties during the dicing step and the peeling properties during the pickup step are controlled so that both become good, and a production method thereof, are provided. The dicing die-bonding film in the present invention is a dicing die-bonding film having a pressure-sensitive adhesive layer on a base material and a die bond layer on the pressure-sensitive adhesive layer, in which the arithmetic mean roughness X (μm) on the pressure-sensitive adhesive layer side in the die bond layer is 0.015 μm to 1 μm, the arithmetic mean roughness Y (μm) on the die bond layer side in the pressure-sensitive adhesive layer is 0.03 μm to 1 μm, and the absolute value of the difference of the X and Y is 0.015 or more.