摘要:
Solder compositions for semiconductor fabrication are provided that include silver (Ag) of 3.0 wt. % to 4.0 wt. %, copper (Cu) of 0.75 wt. % to 1.0 wt. %, nickel (Ni) of 0.08 wt. % to 1.0 wt. %, and tin (Sn) of 94 wt. % to 96.17 wt. %, or that include bismuth (Bi) of 0.3 wt. % to 2.0 wt. % in place of a portion of the tin (Sn) in the solder composition; and, semiconductor packages are also provided that use the solder compositions for bonding one or more components of the semiconductor packages to each other.
摘要:
The present disclosure relates to a substrate structure with selective surface finishes used in flip chip assembly, and a process for making the same. The disclosed substrate structure includes a substrate body, a metal structure with a first finish area and a second finish area, a first surface finish, and a second surface finish. The metal structure is formed on a top surface of the substrate body, the first surface finish is formed over the first finish area of the metal structure, and the second surface finish is formed over the second finish area of the metal structure. The first surface finish is different from the second surface finish.
摘要:
An integrated circuit packaging system, and a method of manufacture thereof, includes: an embedded trace substrate having bonding sites and traces embedded in a base material, an insulation layer on the traces, the insulation layer having a top surface coplanar with the top surface of the base material; and an integrated circuit die connected to the bonding sites.
摘要:
A contact smart card has a smart card contact pad and an IC chip. The smart card contact pad includes a circuit substrate, a card-reader contact element on a first side of the circuit substrate, and a connection element on a second side of the circuit substrate. The card-reader contact element has a noble metal electrically conductive surface, and the connection element has a chip terminal connection surface which is not a noble metal. The IC chip is preferably flip-chip mounted at the second side of the circuit substrate and electrically connected to the chip terminal connection surface. Furthermore, the chip terminal connection surface is preferably an organometallic electrically conductive corrosion protection layer.
摘要:
A flexible display panel and method of formation with a sacrificial release layer are described. The method of manufacturing a flexible display system includes forming a sacrificial layer on a carrier substrate. A flexible display substrate is formed on the sacrificial layer, with a plurality of release openings that extend through the flexible display substrate to the sacrificial layer. An array of LEDs and a plurality of microchips are transferred onto the flexible display substrate to form a flexible display panel. The sacrificial layer is selectively removed such that the flexible display panel attaches to the carrier substrate by a plurality of support posts. The flexible display panel is removed from the carrier substrate and is electrically coupled with display components to form a flexible display system.
摘要:
A contact smart card has a smart card contact pad and an IC chip. The smart card contact pad includes a circuit substrate, a card-reader contact element on a first side of the circuit substrate, and a connection element on a second side of the circuit substrate. The card-reader contact element has a noble metal electrically conductive surface, and the connection element has a chip terminal connection surface which is not a noble metal. The IC chip is preferably flip-chip mounted at the second side of the circuit substrate and electrically connected to the chip terminal connection surface. Furthermore, the chip terminal connection surface is preferably an organometallic electrically conductive corrosion protection layer.
摘要:
Contact bumps between a contact pad and a substrate can include recesses and protrusions that can mate with the material of the substrate. The irregular mating surfaces between the contact bumps and the contact pads can enhance the bonding strength of the contacts, for example, against shear and tension forces, especially for flexible systems such as smart cards.
摘要:
A conductive material is provided to an open end of a penetrating hole penetrating through at least a semiconductor element, on the side of a first surface of the semiconductor element. The conductive material is melted to flow into the penetrating hole. The conductive material is made to flow into the penetrating hole in a state that an atmospheric pressure on the side of a second surface of the semiconductor element opposite to the first surface is lower than an atmospheric pressure on the side of the first surface.
摘要:
A wiring substrate includes a support member, and a wiring member formed on one side of the support member. The support member includes metal foils and at least one resin layer alternately layered, so that one of the metal foils is provided as a first outermost layer on the one side of the support member and another one of the metal foils is provided as a second outermost layer on another side of the support member. The first outermost layer includes thick and thin foils that are peelably adhered. The thick foil contacts the at least one resin layer. One surface of the thin foil faces an outer side of the support member. The wiring member includes wiring layers and an insulating layer alternately layered on the thin foil. The number of the metal foils and the number of the wiring layers are the same.
摘要:
A wiring substrate includes a first wiring structure and a second wiring structure. The first wiring structure includes a first insulating layer, which covers a first wiring layer, and a via wiring. A first through hole of the first insulating layer is filled with the via wiring. The second wiring structure includes a second wiring layer and a second insulating layer. The second wiring layer is formed on an upper surface of the first insulating layer and an upper end surface of the via wiring. The second wiring layer partially includes a roughened surface. The second insulating layer is stacked on the upper surface of the first insulating layer and covers the second wiring layer. The second wiring structure has a higher wiring density than the first wiring structure. The roughened surface of the second wiring layer has a smaller surface roughness than the first wiring layer.