摘要:
A technique capable of improving reliability of a semiconductor apparatus is provided. A semiconductor device having a metal electrode on at least one principal surface and a die pad (a metal member) electrically connected to the metal electrode via conductive resin composed of base resin (an organic binder) mixed with a Ag particle (metal powder) including precious metal are provided, and a configuration is made so that a porous nano-particle coat film (a precious metal layer) having an Ag (precious metal) nano particle fired on a metal surface is formed on at least one of mutually opposed surfaces of the metal electrode and the die pad.
摘要:
A technique capable of improving reliability of a semiconductor apparatus is provided. A semiconductor device having a metal electrode on at least one principal surface and a die pad (a metal member) electrically connected to the metal electrode via conductive resin composed of base resin (an organic binder) mixed with a Ag particle (metal powder) including precious metal are provided, and a configuration is made so that a porous nano-particle coat film (a precious metal layer) having an Ag (precious metal) nano particle fired on a metal surface is formed on at least one of mutually opposed surfaces of the metal electrode and the die pad.
摘要:
In a structure of a semiconductor device, a Si chip and a metal leadframe are jointed by metallic bond via a porous joint layer made of high conductive metal, having a three-dimensional network structure and using Ag as a bonding material, and a film containing Zn oxide or Al oxide is formed on a surface of a semiconductor assembly contacting to a polymer resin. In this manner, by the joint with the joint layer having the porous structure mainly made of Ag, thermal stress load of the Si chip can be reduced, and fatigue life of the joint layer itself can be improved. Besides, since adhesion of the polymer resin to the film can be enhanced by the anchor effect, occurrence of cracks in a bonding portion can be prevented, so that a highly-reliable Pb-free semiconductor device can be provided.
摘要:
There is provided a wiring material including a core layer made of metal and a clad layer made of metal and a fiber in which the core layer is copper or an alloy containing copper and the clad layer is formed of copper or the alloy containing copper and the fiber having a thermal expansion coefficient lower than that of copper, the wiring material having a stacked structure in which at least one surface of the core layer is closely adhered to the clad layer, and the fiber in the clad layer is arranged so as to be parallel to the surface of the core layer.
摘要:
A semiconductor device featuring a semiconductor chip having a first main surface and a second, opposing main surface and including a MOSFET having source and gate electrodes formed on the first main surface and a drain electrode thereof formed on the second main surface, first and second conductive members acting as lead terminals for the source and gate electrodes, respectively, are disposed over the first main surface, each of the first and second conductive members has a part overlapped with the chip in a plan view, a sealing body sealing the chip and parts of the first and second conductive members such that a part of the first conductive member is projected outwardly from a first side surface of the sealing body and parts of the first and second conductive members are projected outwardly from the opposing second side surface of the sealing body in a plan view.
摘要:
A power semiconductor module and an inverter apparatus in which a device or a joining part is not mechanically damaged even when the temperature in use becomes a high temperature in the range of 175 to 250° C., resulting in excellent reliability at high temperature retaining test and thermal cycling test. Low thermal expansion ceramic substrates are disposed above and below the device. A material having a coefficient of thermal expansion of 10 ppm/K or less is disposed between the ceramic substrates. In addition, an inorganic material having a coefficient of thermal expansion in the range of 2 to 6 ppm/K or less is disposed around the device.
摘要:
A semiconductor device includes a semiconductor chip and a printed circuit board. Metal electrodes of the semiconductor chip and the internal connection terminals of the printed circuit board are electrically connected through the metallic joining via precious metal bumps. A melting point of a metal material constituting each of the metallic joining parts is equal to or higher than 275 degrees, and a space defined between the chip and the board is filled with resin (under fill) containing 50 vol % or more inorganic fillers.
摘要:
A bonding apparatus comprising a bonding tool, means for driving the bonding tool, means for detecting an amount of crushing of a bonding portion during bonding, means for calculating a rate of change of the amount of crushing detected by the amount-of-crushing detecting means, means for setting a target value, which is inputted from an external source, of the amount of crushing of the bonding portion, and means for controlling the driving means. When the rate of change of the amount of crushing calculated by the calculating means is smaller than a predetermined value, the controlling means compares the amount of crushing detected by the amount-of-crushing detecting means with the target value. When the amount of crushing detected by the amount-of-crushing detecting means is smaller than the target value, the controlling means discriminates that the bonding is being performed in a satisfactory manner and hence should be continued.
摘要:
Provided are a metal-resin composite having excellent adhesive strength, a method for producing the same, a busbar, a module case, and a resinous connector part. The metal-resin composite comprises a metallic member 1 including a metal with a high melting point of 500° C. or more, a resin member 2 being integrated with the metallic member 1; and an alloy layer 3 including a metal with a low melting point lower than 500° C. The alloy layer 3 is arranged between the metallic member 1 and the resin member 2, and has average surface roughness thereof in the range from 5 nm or more to less than 1 μm at the interface between the alloy layer 3 and the resin member 2. Herein, a period of the unevenness formed on the interface of the alloy layer 3 is in the range from 5 nm or more to less than 1 μm.
摘要:
A die bonding portion is metallically bonded by well-conductive Cu metal powders with a maximum particle diameter of about 15 μm to 200 μm and adhesive layers of Ag, and minute holes are evenly dispersed in a joint layer. With this structure, the reflow resistance of about 260° C. and reliability under thermal cycle test can be ensured without using lead.